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ABSTRACT

The paper accounts for the work in progress: it ad-
dresses some issues concerning scalar mixing models
to be implemented in the probability density function
(PDF) computation of turbulent flow. Basic notions are
briefly recalled; a heuristic model that simulates both
the effect of turbulent mixing and molecular diffusion
in the physical space is presented. A particle model is
then proposed that describes an evolution of scalar vari-
able in its sampling space (in the context of the PDF
method). The model satisfies a selection of constraints
imposed on the general physical modeling.

INTRODUCTION

Scalar mixing has been studied for many years, first
rather independently in fluid mechanics, chemical engi-
neering and combustion communities (Villermaux 1986,
Villermaux & Falk 1996) and now certain convergence
of different approaches is observed. It is an important
issue for computation of reactive flows where different
species mix at a molecular level to initiate chemical
reaction. In the case of turbulent flows, species are
first mixed down the smallest turbulent scales (so-called
macromixing) and then local non-uniformities of con-
centration are smoothed out by the action of molecu-
lar diffusion (micromixing). Difficulties in modeling are
rooted in the proper description of turbulent straining
of fluctuating scalar gradients and in the coupling of
this effect with molecular mixing.

The issue of an adequate modeling of scalar dynam-
ics in a turbulent flow remains a notoriously difficult
problem in traditional moment closures. The reason of
this difficulty it (at least) threefold: a closure for scalar
convection due to fluctuating velocity is needed; for re-
active scalars, source term is not closed; and the molec-

ular diffusion term has to be modeled. The first two
difficulties are overcome in the probability density func-
tion (PDF) approach; however, the scalar micromixing
term is not closed in all one-point closures, including
the PDF method.

The motivation for the present study has arisen nat-
urally: the authors have been developing the PDF
modeling approach for turbulent free-shear and wall-
bounded turbulent flows (Pozorski & Minier 1994,
Minier & Pozorski 1999) for some time now, and the
PDF method is considered as particularly suitable for
turbulent reactive flows (Pope 1990; Fox 1996). Once
the difficulties concerning the modeled turbulence equa-
tions, statement of boundary conditions, and code val-
idation are overcome, the account for passive and reac-
tive scalars is the next step in this direction.

The main idea of the PDF method (for a review see
Pope 1994) is to propose a closed evolution equation for
the one-point joint pdf; it can include velocity, turbu-
lent energy dissipation rate and scalar variables (chem-
ical composition, temperature, etc.) The equation is
solved by means of the so-called particle representation
(Monte Carlo method). In transport equations for inert
and/or reactive scalars, convection and source terms are
treated without recourse to closure hypotheses. How-
ever, the molecular mixing term cannot be represented
exactly by one-point PDFs. A variety of modeling pro-
posals have already been put forward (Pope 1990, 1994,
and Dopazo 1994 give a review), none of them reveals
to be fully satisfying, as far as a number of criteria to
be fulfilled by a physically sound model is concerned.

In the present paper, a problem of molecular mix-
ing is stated in the PDF context, the notion of “anti-
diffusion” is indicated and related difficulties are distin-
guished. A simple mechanistic model that accounts for

1357



both turbulent (random) and molecular mixing illus-
trates the physical points. A particle evolution model
is then put forward.

GOVERNING EQUATIONS, DIFFUSION AND AN-
TIDIFFUSION

Consider the evolution of a passive scalar ¢(x,t)
in a given velocity field U(x,t). It is governed by
a convection-diffusion equation (we suppose here that
there are no scalar sources in the solution domain)

% 4 Uvs =DV (1)

where D stands for the molecular diffusivity.

Assuming first that we are interested in features of the
diffusion process at small length scales, velocity field at
these scales can approximately be considered constant;
with no loss of generality it can be taken as zero. With
an initial condition ¢(x,t=1t0) = ¢o(x) and boundary
conditions, a unique solution to the above exists at later
times. It is usually written as

d(x,t+to) = /qﬁo(y)K(x,y,t) dy (2)

where

. —3/2 —(x—y)?

K(x,y,t) ~ (Dt) exp <—4Dt ) 3)
stands for the kernel function (or propagator) of the
diffusion equation. One notices that the solution is lin-
ear in ¢o; ¢o can be thought of as a sum of weighted
Dirac functions (fine-grained distribution). In the lan-
guage of Monte Carlo method, this is tantamount to
simulate (using random walk) certain number of inde-
pendent sources.

In the PDF context, the notion of antidiffusion ap-
pears. The equation satisfied by the one-point pdf
f(¥;t,x), i.e. pdf that at time t and location x the
variable ¢(¢,x) takes the value 3, can be obtained from
(1); with the assumption of homogeneous turbulence, it
writes:

af d

2 — 2 32f
5t = gDV (x 9] = DV?S (4)

—¢ “5q7
(Y| X = z) is used to represent the mean value of the
random variable Y conditioned on the value X = =z
and is often directly written as (Y |z). In the above
equation, €4 is the mean value of the dissipation rate of
the scalar variance {$?) conditioned on the value ¢ = ¢
and x:

es = D((V9)’| (x,9)) (5)

The sign before €4 in (4) is negative thus it formally
introduces antidiffusion in the phase space of ¢ while
there is “normal” diffusion in the physical space of x.
Monte Carlo modeling of the diffusion equation (1)

is essentially local; for a review of this approach, see
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Ghoniem & Sherman (1985). Localness means that ran-
dom displacement of any notional particle is indepen-
dent of the actual state of other particles. Only after-
wards a mean field (like concentration) is computed.

Now, in the case of antidiffusion, the coefficient in
front of 8% f/84? in (4) is negative. Reasoning now in
terms of the generic diffusion equation, Eq. (1) with
U = 0, with negative D, this corresponds to the in-
version of the time arrow (¢ — —t). Consequently, one
finds in (3) a square root of a negative number. This
is a simple manifestation of a rigorously proven fact
that Eq. (1) with D < 0 and a given initial condition
represents an ill-posed problem from the mathemati-
cal standpoint. Dopazo (1994) alludes to the apparent
problems with the numerical solution of this equation.
On the other hand, given ¢(x, to +t), t > 0, solution of
the antidiffusion equation at the time instant to + ¢+ ¢’
can be found as the solution of the diffusion equation
at to+t—t' and, in particular, for t'=t this amounts to
finding the initial condition for the diffusion equation,
l.e. ¢o(x) that is governed by its integral equation (2).
Consequently, an evolution model, possibly stochastic,
for notional particles should take into account the ac-
tual state of other particles. This is akin to the notion
of “self-consistent” field: particle that interacts with
others can naturally be considered as placed in a field
(or resulting potential) of other particles.

i.c. - Heaviside f., b.c. - zero-flux
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Figure 1: Evolution of a scalar (upper plots) and its
quasi-pdf governed by the standard diffusion equation;
zero-flux boundary conditions.

The above explains the fact that small-scale scalar



mixing is usually modeled in a discrete (or Lagrangian)
way with the use of pairs of particles, i.e. two stochastic
particles at a time (Dopazo 1994, Pope 1985) and not
only one (as in the Langevin equation). Alternatively,
information on other (interacting) notional particles is
conveyed through the PDF for a range of scalar val-
ues; modeled scalar PDF evolution equations are often
integral equations.

Now the question arises: how to reconcile the appar-
ent ill-posedness of the antidiffusion equation with real
(i.e. existing) physical processes where initial spatial
non-uniformity of a certain variable decreases? Looking
at the diffusion process, it is readily seen that concen-
tration tends to the uniform, single-valued final state.
In fact there is no contradiction: antidiffusion takes
place in the phase space, not in the physical one (lo-
cation space). For the scalar diffusion, the phase space
variable is concentration. For the action of viscosity,
antidiffusion in the phase space of velocity is a direct
consequence of the diffusion of momentum in the phys-
ical space.

1D SLAB MODEL

This is a simple mechanistic model that mimics the
scalar diffusion process in the field of homogeneous tur-
bulence.
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Figure 2: Evolution of a scalar as governed by the dif-
fusion equation and the slab model; zero-flux bound-
ary conditions. Scalar value vs/ z-coordinate at dif-
ferent time instants: thick line at any plot is a re-
arrangement of the thin line at the plot immediately
above it.

The main idea of the “slab” model is to divide the
basic interval in 1D of length Lo into 2V equal pieces;
each of them is further subdivided into 2 smaller
pieces. At time intervals Aty s the small subinter-
vals are spatially rearranged (mixed). This process is
random in a sense that for every slab (1,2,...,2%),

its parts (1,2,...,2™) are rearranged in the order
(i1,12,...,1,m) where a sequence {ix} stands for a
randomly-chosen permutation of (1,2,3,.. .,2M) in-
dices. The actual simulation goes as follows. After a
time 2™V L%/ D, the subintervals are randomly mixed.
This mimics the turbulent stirring, i.e. the distortion of
the scalar field by turbulent eddies of different length-
scales and life times, the distortion by smaller eddies
being more frequent than by larger ones. The small-
est eddies are characterized by the Kolmogorov length
and time scales, and the largest by the basic interval
size. Generalisation to the 2D/3D geometry, although
not performed yet, is straightforward: subsequent rear-
rangements of squares (or cubes) are to be considered
instead.

Before continuing with the slab model, a simple
computer experiment has been performed. One-
dimensional diffusion equation (1) has been solved in
time on a given interval with a step initial condition
(cf. Fig. 1)

F(,t=0) = 0.5 % [§(t — 1) + 6(¢b + 1)]

which corresponds to an initially unmixed scalar. Zero-
flux boundary conditions are applied. An easy and
standard computation using finite differences has been
done to forward the solution in time. Then, a less-
frequently asked question arises: what is the shape of
the quasi-pdf (because a problem is perfectly determin-
istic) of the solution? The quasi-pdf is defined as the
histogram of values of ¢ on the interval, found using
bin-counting method.

Figure 1 shows the evolution of ¢(z,t) and the cor-
responding quasi-pdf f(¢,t). It is readily seen that the
asymptotic evolution of f resembles initial evolution
phase of the pdf of a scalar undergoing mixing process.
However, contrary to the true pdf, the quasi-pdf stays
self-similar and does not relax towards a Gaussian one.
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Figure 3: Evolution of a modeled flatness factor in a
normalized time; prediction of the slab model. Circles
— DNS data of Eswaran & Pope (1988)

Next, we performed another computer experiment
with the slab model. To illustrate the idea of random
mixing, Fig. 2 shows some subsequent shapes of ¢(z,t)
in the simplest rearrangement with N =1, M = 1.
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Then, a complete simulation result is presented for
the flatness factor of the scalar PDF obtained with
the model (Fig. 3). A reasonable agreement with the
DNS results of Eswaran & Pope (1988) suggests that
this simple mechanistic model captures already some
physics of the actual mixing process.

It may be worthwhile to mention here that some-
what analogous reasoning has been put forward by Fox
(1992). He used analytical solution of the 1D diffusion
equation in the context of scalar pdf in lamellar struc-
tures to formulate a Fokker-Plank closure. Moreover,
the akin idea of the “rearrangement events” is impor-
tant in the linear eddy modeling (LEM) developed by
Kerstein (1991).

PARTICLE MODELS FOR SCALAR MIXING

In the PDF approach, several proposals have been
put forward to model the molecular mixing term, but
it is extremely difficult to satisfy at a time all imposed
criteria of a good model. Concerning only passive and
non-reactive scalars, they are as follows (Pope 1994a):
- realisability, i.e. boundedness of scalar values should
be preserved,
— variance of scalar concentration should decrease in a
prescribed way,
- the scalar pdf evolving in time should be (at least)
qualitatively correct,
— the pdf should asymptotically tend to a Gaussian dis-
tribution,
— it is preferable for a model to be physically sound.

Now, following the reasoning from the previous sec-
tion, a tentative idea of a simple antidiffusion model is
advanced. It gives an evolution of the initial pdf to-
wards Gaussian distribution. The guiding idea of the
model is to consider every stochastic particle (to which
a scalar value is attached) in the “field” of other par-
ticles, represented by the pdf, at given time instant, in
the phase space of the scalar variable.

Model using triangular pdf

Given a certain number (i.e. a discrete representa-
tion) of scalar values, ¢1,¢2,...,¢n , their bounds
Pmin, Pmaz are computed, and an auxiliary variable qg,-
is taken, using these scalar bounds and a random num-
ber taken from the uniform distribution #(0,1). In the
model, auxiliary triangular pdf on [¢min, Pmaz] With a
maximum ¢; is used and inversion of its cumulative dis-
tribution function (cdf) is the method applied for the
purpose.

Then, new values are assigned to scalar variables as
follows:

bi = di + w(di — ¢:) (6)

where 0 < w < 1is a kind of relaxation parameter. The
procedure is then repeated for successive iterations.

It should be noted that Eq. (6) differs from both the
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Figure 4: Evolution of a modeled pdf (method using
auxiliary triangular pdf).

[EM formula of Dopazo and the improved Curl model
(including ordered-pairing improvement by Norris &
Pope, 1991). Concerning the IEM formula, it does not
change the form of the initial scalar PDF; only its vari-
ance is affected. As to the Curl’s model, it predicts the
asymptotic PDF to differ from Gaussian.

The reason of the different behavior shown by (6) can
be stated as follows. The scalar variable ¢; is allowed to
interact with another notional fluid particle with scalar
value ¢;, and not only with the mean value (¢) (asin
IEM) or another particle from the ensemble ¢; (Curl).
The point is that scalar values are distributed continu-
ously on the [¢min, dmaz] interval.

Norris & Pope (1991) state that the necessary condi-
tion for the PDF to evolve toward a Gaussian is that the
conditional mean (@:|¢:) should be linear in ¢;. Taking
the formula for the triangular PDF and computing the
conditional averages, it is readily checked that this is
indeed the case: (¢i|¢:) = §(¢, + Pmin + Omaz.

Fig. 5 shows the temporal evolution of the selected
moments of the pdf. Variance decreases nearly expo-
nentially and higher order moments tend to their re-
spective Gaussian values. Fig. 4 contains a few plots
of the pdf itself (using relaxation parameter w =0.2).
Pdf is evolving from the initial double-peak distribution
towards a Gaussian one.

Finally, in Fig. 6 flatness coeflicient of the pdf evolv-
ing in a normalized time (defined by the decreasing
variance of the pdf) is compared to the DNS data of
Eswaran & Pope (1988). Obtained results are (at least)
qualitatively correct.

Model using actual pdf

Rather than using somewhat arbitrary triangular pdf
(in fact, any other continuous pdf bounded by actual
scalar limits @min, Pmaz can be applied), we take the
actual scalar pdf computed at a given iteration and in-
verse its cdf to obtain the auxiliary variable qf),'. This
is actually the only difference as compared to the pre-
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Figure 5: Evolution of chosen moments of the scalar
pdf using auxiliary triangular pdf; black (dashed line):
w=0.1, red (solid line): w=0.2.
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Figure 6: Evolution of a modeled flatness factor in
a normalized time (method using auxiliary triangular
pdf).

vious model. Results are detailed and discussed in the
paper. Fig. 8 shows the temporal evolution of the se-
lected moments of the pdf. Variance decreases nearly
exponentially and higher order moments tend to their
respective Gaussian values. Fig. 7 contains a few plots
of the pdf itself (using relaxation parameter w =0.2).
Pdf is evolving from the initial double-peak distribution
towards a Gaussian one. Moreover, in Fig. 9 flatness
coefficient of the pdf evolving in a normalized time (de-
fined by the decreasing variance of the pdf) is compared
to the DNS data of Eswaran & Pope (1988). Obtained
results are (at least) qualitatively correct.
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Figure 7: Evolution of a modeled pdf (method using
inversion of the cdf).

Both models possess some desirable features:

— scalar bounds ¢i € [Pmin,Pmaz] are automatically
preserved,

— at every iteration all scalar values are modified, con-
trary to so-called interaction models, as discussed by
Pope (1985) and Dopazo (1994), where only a selection
of particle pairs are chosen at every time step,

— variance of ¢ decreases exponentially,

— the pdf of ¢ is qualitatively correct, as compared to
the available DNS data.

The simple model using inversion of the cdf shows
some similarities to the Langevin model, recently pro-
posed by Valifio & Dopazo (1991). However, the differ-
ence is that in their model binomial pdf is used whereas
in our approach any continuous bounded-support pdf
will do. Both naturally give a relaxation towards a fi-
nal Gaussian distribution.

CONCLUSION

Proposals for models of scalar mixing have been put
forward. The models for particle evolution as of par-
ticular interest, as they can be directly incorporated in
a PDF computation of turbulent flows. Current devel-
opments aim also at including multiple scalars (differ-
ential diffusion, multispecies reaction) and/or reaction
modeling in test diffusion flames, e.g. along the lines of
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Figure 8: Evolution of chosen moments of the scalar
pdf (mean value, variance, flatness, superflatness) us-
ing inversion of the cdf; black (dashed line): w=0.1,
red (solid line): w=0.2.

the scheme for (¢,Y) as considered by Norris & Pope
(1991). However, before this is done, the utility of the
presented triangular PDF model and its modifications
will be tested in the standalone PDF code.
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