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ABSTRACT

Particles dispersion plays an important role in many in-
dustrial applications such as combustion, pollution control
and also in experimental measurements like Laser Doppler
Velocimetry. In this last case, particles are supposed to have
the same behaviour as fluid particles in order to give rele-
vance to the experimental measure. However it has be shown
Jacquin et al. (1991) that noticeable errors can appear in the
rms velocity measurement of supersonic jet or shear layer,
even if care has been taken concerning particle seeding of
the flow. The aim of this paper is to use direct numerical
simulation of particle-gaz flow to investigate this phenom-
enon.

INTRODUCTION

We are mainly concerned with three dimensional su-
personic mixing layers. In such flows, beyond convective
Mach number greater than 0.6, stability theory and direct
numerical simulations show that oblique modes are much
more rapidly amplified than two dimensional modes Sand-
ham and Reynolds (1991) (which correspond to the incom-
pressible modes) leading to A vortices which are staggered
in the streamwise direction. This particular behaviour could
involve strong modification in mixing process. The object
of the present work is to investigate how those highly three
dimensional structures influence particles dispersion.

NUMERICAL METHOD
Governing equations

The full time dependent Navier-Stokes equations for
three-dimensional fluid motion are written in a non-dimen-
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sional conservative form. For a three-dimensional cylindri-
cal case, we have :

a_U+E)£+6_G_ B_H_%_@ JH, 0 ()
ot Jdx dy dz dx dy oz
U is the vector of conservative variables :
U= (p, pu, pv, pw, E)" @)

F, G, H are the non-viscous fluxes. F,, G,, H, are the vis-
cous contributions.

Here p,u,v,w, E denote respectively the density, fluid
velocity components in the directions x, y and z, and the
total energy (sum of the internal and kinetic energy). Non-
dimensionalization of these equations is with respect to ref-
erence quantities, namely a reference length L*, velocity U l* s
density p7, temperature Ty, and viscosity uj. L* /U} is the
time reference scale, while p}Ul"2 is the pressure (and to-
tal energy) reference. The superscript * refers to a dimen-
sional quantity. In our case, as we are interested by a tem-
poral mixing layer, the reference lenght is chosen as the
initial vorticity thickness of the longitudinal velocity pro-
file : L = 84y, the reference velocity, temperature, den-
sity and viscoity are respectively Uf, T}, p}, u}, which are
the far field values of the upper stream ( cf 1). Using this
non-dimensional scheme, we introduce the Reynolds num-
ber of the flow Re = pjU[dw0/u} and the Mach number
which is in our case equal to the convective Mach number
M. is M = U} /\/YR*TF, where R* =287.15J kg™' K~L.
The Prandtl number, assumed to be constant, is defined by



Pr=p*Cy, /k* where k* is the thermal conductivity. The vis-
cosity follows Sutherland’s law. The system is completed by
the definition of the total energy, written in non-dimensional
form as :

E= —+%p(u2+v2+w2) 3)
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Numerical scheme

Equations are solved using a finite volume high order
extension of MacCormack’s scheme due to Gottlieb and
Turkel Gottlieb and Turkel (1976). This scheme has al-
ready been used by many authors for boundary layer sim-
ulations Bayliss, A. et al (1985), Ducros, F. (1995), for
mixing layer simulations Ragab and Sheen (1991), Ragab
and Sheen (1992), Tang, W. et al (1989), and for supersonic
jet flow studies Mankbadi et al (1994). Based on predictor
corrector phases, the scheme is explicit, second order ac-
curate in time and fourth order in space. The time step Az
follows a CFL condition, and Fourier criteria. Extension to
three dimensions and to the complete fluid motion equations
is done through a directional splitting sequence :

2 p—mg—p— y— gy —y—

Un+ = szLvavaz L_v Lx L;L;tL;LijL: u* (5)
L 2

Uttt = L;»L;QL;L; L_;!-L; vaL)'szva L,v L, Ut

Ly, Ly, L;, Lyy, Ly, and L,, correspond respectively to
the implementation of F, G, H, F,, G, and H,,. L;" (with
i=ux,Yy, orz) refers to a sweep in the direction i with forward
predictor and backward corrector. The alternate version L,
employs a backward predictor and forward corrector.

Boundary conditions and initial conditions

Because we deal with temporal mixing layer, periodic
boundary conditions are used in the streamwise and span-
wise directions (x and y directions). As we are consider-
ing an unbounded compressible mixing layer, non reflec-
tive boundary conditions based on Thompson Thompson
(1987), Gamet and Estivalezes (1995) idea are used in the
cross-stream direction (z direction).

Initialization of velocity, temperature and density fields
consists of two parts, the mean profiles and the pertubations
from linear stability theory Sandham and Reynolds (1991).
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The mean non dimensional velocity profile in the stream-
wise direction is :

7 = tanh(2z) 6)

The mean non dimensional temperature and density
profiles are given by Crocco relations:
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The initial disturbance field is specified by :

' = AjReal{a(0,, 0)e(®™+0)} 4 .
AyReal{a(0, B)e ™) 1 4(qr, —B)eil@x—PN} ®)
where #(o,B) is an eigenfunction of the linear in-

stability wave with streamwise wavelenght L, = 21/o =

13.36 8y and spanwise wavelenght Ly, = 21/ = 13.36 8.

It consists of a two dimensional and a pair of oblique waves.

The angle of the oblique waves with the x direction is 45

degree. Similar disturbances are added for p’, V', w', and T".

Here the value of the phase is /2 in order to get the transla-

tive mode Sandham and Reynolds (1991), Pierrhumbert and

Widnall (1982) .

Particles dispersion simulation
The following assumptions are made for the dispersed
phase :

dilute flow,

all particles are rigid spheres,

particle-particle interactions are neglected,

density of particles is much larger than that of the fluid
gravity is negligible.

With those assumptions the non dimensional particles
motion equation writes :

v Cy .~

—=40-v

dt St )

) ©)
Xy

dt

where U is the fluid velocity at the particle location and
V is the particle velocity.



. ppdy Ut
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ified Stokes drag factor coefficient ( Cy = 1+ 0.]5Re?,'687,

for particle Reynolds number Re, = |U — V|d,/v less than
1000).

The velocity and particle position equations are inte-
grated by fourth order Runge and Kutta methods. Fluid ve-
locity at particles positions is interpolated by fourth order
Hermite polynomia interpolations.

is the Stokes number and C is the mod-

RESULS FOR PARTICLE DISPERSION
Parameters of the flow simulation

Coming from the previous results on the flow field sim-
ulation, we have choosen 64x64x64 grid cells, uniformely
distributed in the three spatial direction The Reynolds num-
ber based on g is 400 and the convective Mach number is
0.8. Amplitudes of the disturbances are A} = A; = 0.025.
Initially, 64x64x64 particles are seeded uniformely in the
computational domain ( one particle per cell) and particle
velocity at the beginning of the calculation in each compu-
tational cell is the same of the fiuid velocity in the cell. Dis-
persion of particles with Stokes numbers ranging from 0.1
to 1000 were simulated. Since there are periodic boundary
conditions in the streamwise and spanwise directions, parti-
cles which move out of the box in these two directions from
one side will be put back in the domain from the other side.
Particles which move out the box in the cross-stream direc-
tion will not be recovered.

Resuls of particle dispersion

On figure 3 is summarized the evolution of the root
mean square of particle number per cell over the whole field
versus the Stokes number for different times. It is defined by

10)

Ne
Nrms = (ZNiZ/NC)I/Z
i=1

Here N, = 64x64x64 and at time t = 0 ,N,,,; = 1. This quan-
tity is used to determine the overall concentration character
of particles.

It is obvious that particles with Stokes numbers close to
unity have larger N, value which is similar to the results
of Lin et al. (1998). It should be noted that unlike incom-
pressible flows simulations, here three dimensional A large
scales structures strongly affect the dispersion even in the
early stages of the mixing layer destabilization. Indeed, we
don’t observe two dimensional pairing like in incompress-
ible shear layer. This can be clearly seen on figure 2 where a
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perspective view of a pressure surface, that enclose a mini-
mum of pressure (associated with strong rotation) is shown.

In order to examine the dispersion patterns for the dif-
ferent Stokes numbers, we have used the plane concept al-
ready defined in Lin et al. (1998). It corresponds to a
thin slice with a thickness of a computational cell. Indeed,
for the (x,z) plane at y = L, /2, it means a thin slice with
Ly/2 <y < Ly/2+ Ay, where Ay is the mesh spacing in the
y direction.

We have drawn on the figure 4 the distribution of the
particle in the plane (x,z) at y = L,/2 at time ¢ = 26. For
the smallest Stokes number, the particles seem to follow
quite closely the fluid particles, particles with Stokes num-
ber close to unity tend to accumulate around the edge of the
three dimensional large scale structures. For larger Stokes
numbers, the dispersion of particles in cross-stream direc-
tion is decreasing, indeed the particles are less influenced
by the A shaped vortices. On the figures 5, are drawn the
particle distribution in the plane z = 0. The accumulation of
the particle with Stokes number of unity on the edge of the
vortex is clearly seen on that figure. Thoses particles trace
the projection of the three dimensional coherent structures
on that plane. On the figure 6, the particle distribution in the
plane x = L, /2 is plotted. Here again, the structure projec-
tion on this plane is obvious when one looks at particle of
St = 1 locations. Actually, theses particles seem to roll up
around the arms of the A vortex in an helicoidal way.

From this plane cut, particles with St = 10 show a quite
different behaviour. Clearly, thoses particles are less sensi-
tive to the vortex, there is no such acccumulation at the egde
of the vortex arms, even if void zone is present inside the
vortex. For greater particle Stokes number, there is no more
effect of the 3D vortex on the particle distribution, only a
wavy movement can be seen on this plane cut.

In order to quantify the influence of those structures on
particle dispersion the root mean square of particle num-
ber per cell for (y,z), (x,2), (x,¥) planes, Nps(x), Nems(y),
Nyms(x) has been evaluated at time t = 26 (figures 7(a), 7(b),
7(c)) for various Stokes numbers. For example Nypy(x) is
defined by :

Nep
Nyms(x) = (ZN?(X)/NL'IJ)I/Z

i=1

n

where N, is the total number of computational cells in the
plane (y,z) and N;(x) is the number of particles in the ith cell
of that plane. The same definition is used for the two others
quantities Nyms(y) and Nyps(z).

On the figure 7(a), we can observe how the particles
with different Stokes numbers concentrate along the stream-
wise direction. The maximum concentration is obtained for



particle of unity Stokes number, when concentration is min-
imal for small and larger Stokes numbers. Moreover, the
trend observed on that figure for the Stokes number which
gives the maximum concentration, is completely opposite
to that obtained for incompressible shear layer Lin et al.
(1998). Even though for the incompressible case, Nypy(x)
is maximum at the boundaries of the computational box in
x direction (for x near 0 and x near Ly) and minimal else-
where, here Ny (x) is maximum in the center of the box (
in x direction ) and minimal at the boundaries. This empha-
sizes that dispersion mecanismes are really different in the
two cases.

The next figure 7(b) gives the particles accumulation for
the spanwisé y direction. The same conclusions as in the
previous figure can be drawn. The local minima observed
for Stokes number of 1 show the trace of the arms of the A
vortex whereas Stokes number of 10 particle present in that
zone a local maxmium.

The figure 7(c) shows the particle accumulation in the
cross-stream direction. Due to the lack of pairing of span-
wise vortex, the maximum concentration for the different
Stokes number is restricted to a zone of size 28, centered
at z = 0.. Maximum concentration is obtained for Stokes
number 1 particles. This is consistant with the fact that su-
personic shear layer gives rate of growing much smaller than
incompressible one.

From that three figures, the level of concentration in the
three direction is much lower compared to the incompress-
ible case. This shows that particle dispersion is our case
much more tridimensional than in the incompressible case.

To give one more insight in the way particles are dis-
persing in that kind of flow we have plot on the figures 8(a),
8(b), 8(c), 8(d) points representing the cells which contain
at least three particles for the Stokes numbers 0.1, 1, 10,
100 respectively. Moreover superimposed on thoses figures
is an isosurface corresponding to a pressure mimium which
encloses the core of the A vortex. We have used a vertical
clipping plane parallel to one of the arms of the vortex to cut
the isosurface so that one can see inside the vortex core the
presence of particles.

It is obvious on the figure 8(b), that Stokes number 1
particles are depleted from the vortex core and are twisted
around the surface of the vortex in an helicoidal way and
form a kind of filaments. The green and turquoise points on
that figure correspond to cells where particle number is im-
portant whereas the purple points correspond to cells where
particle number is 3.

For the smallest particle Stokes number, we can see that
one can find particles inside the vortex, although the concen-
tration seems to be more homogeneous than in the previous
even if a zone located at the head of the A vortex contains
green points.
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Finally, for the two greatest particle Stokes numbers on
figures 8(c) and 8(d), one can see vortex arms are filled by
particles. Again, this is showing the weak influence of the
vortex on the particle dispersion.

CONCLUSION

Direct numerical simulation of particles dispersion in
supersonic 3D mixing-layer have been done. First compar-
isons with the incompressible case show important differ-
ences due to strong three-dimensionality of such flows. Par-
ticle with Stokes number close to unity are centrifugated at
the periphery of large scale vortices. Because of the A shape
of those vortices and because no pairing of two-dimensional
structure is present, dispersion behaviour is very different
from the incompressible case.
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Figure 1. Temporal three dimensional mixing layer

Figure 2. Isosurface of min pressure at time =20

Nrms

Stokes number

Figure 3. Root Mean Square of particle number per cell for different
Stokes numbers
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Figure 4. Plancutaty=1L,/2 at r=26

(a) St =0.1 (b) St =1

(c) St =10 (d) St =100

Figure 5. Plancutatz = Qatr =26



RMS of particle number per cell
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(a) Particles number > 3, St = 0.1
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Figure 6. Plan cutatx = L,/2 att =26
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Figure 7. N, by direction at time t=26

(b) Particles number > 3, St =1 (c) Particles number > 3, St = 10 (d) Particles number > 3, St =

100
Figure 8. Particles visulisation
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