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ABSTRACT

A series of large eddy simulations of plane Couette
flow has been performed for Reynolds numbers between
750 and 3750. Three different models were used for the
sub-grid scale stresses, and the results were found to be
in reasonable agreement with existing data. The results
were used to calculate Cy, the coefficient in the stan-
dard k — € turbulence model. It was found that in the
near-wall region, significantly lower values of this coeffi-
cient were predicted, compared to correlations based on
channel flow. One possible explanation could be that
the boundary has a greater influence on the turbulence
in the case of Couette flow in which there is no mean
pressure gradient.

INTRODUCTION

Plane Couette flow is, at least from a geometrical
viewpoint, one of the simpler flows commonly encoun-
tered in fluid mechanics. The mean velocity profile
takes an “S-shape,” with high velocity gradients in the
vicinity of the walls and a roughly linear variation in
the central core region. The flow is also characterised
by a constant shear stress across the channel and an
approximately constant rate of turbulent kinetic en-
ergy production in the central region. Near to the wall,
the characteristics of the fluid motion are similar to
those found in other boundary-layer flows. However,
further out from the wall Couette flow differs markedly
in many respects from other apparently related flows
such as channel flow or plane Poisseuille flow. One im-
portant feature is the existence of very large turbulence
structures in the core region — such structures are not

present in the pressure—driven case of plane Poisseuille

flow.
Much of the existing information on Couette flow has

been obtained from direct numerical simulation (DNS).
Recent studies include those of Bech et al. (1995) and
Komminaho et al. (1996) who used Reynolds numbers
of 1300 and 750 respectively. The convention adopted
in this paper is to define the Reynolds number Re as:

_ Urelh

Re ™ 1)

where Uy is the relative velocity of the plates, h the
plate separation and v the kinematic viscosity.

A number of experimental studies of Couette flow
have also been undertaken. Data taken at low Reynolds
numbers include those of Bech et al. (1995) and Ay-
din and Leutheusser (1991); both sets of experiments
used a Reynolds number of about 1300. Nakabayashi
et al. (1997) have recently published experimental data
obtained for Reynolds numbers between 750 and 5000
and for higher Reynolds numbers, the most comprehen-
sive set of measurements is probably that obtained by
El Telbany and Reynolds (1982) for Reynolds numbers
from 9500 to 19 000.

In this study a series of large eddy simulations (LES)
was undertaken using a modified finite-difference CFD
code originally developed by Zang et al. (1994). The
Reynolds numbers used were from 750 to 3750. The
results were then used to compile information on tur-
bulence statistics suitable for use in Reynolds—averaged
turbulence models.

LARGE EDDY SIMULATION

A number of different approaches to the numerical
modelling of turbulent flows are available and several
studies have been applied to this problem. DNS solves
the fundamental form of the Navier-Stokes equations
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est Reynolds number, only the DTM was used, this
being the model that had given the closest agreement
with other data in the other simulations.

Figures 2 to 7 show the r.m.s. fluctuating velocity,
normalised by the friction velocity. There is a tendency
for the code to overpredict the streamwise component
of the turbulent intensity and underestimate the other
two components. One possible reason for this is that the
periodic boundary condition caused artificial forcing of
the longest streaks leading to values for the streamwise
intensity which were somewhat too high. Komminaho
et al. conducted simulations for three different box sizes
(287 x 8m x 2; 107 x 47 x 2 and 8 x 4 x 2) and found
that the predictions for the streamwise velocity fluctu-
ations for the mid-size domain only differed from those
of the largest domain by a few percent, although with
the smallest box, this quantity was overpredicted by
up to about 20%. This would suggest that the differ-
ences between the present and earlier results cannot be
~ attributed solely to the finite box size used in these
simulations.

The rates of dissipation and production of turbulent
kinetic energy were calculated using the following for-
mulae (Tennekes and Lumley, 1972):

P = ~wiu;Sij 2

€ = 2US;;5q; (3)

where P and ¢ are the production and dissipation rates
respectively, v is the kinematic viscosity and u; refers
to the fluctuating component of velocity. The strain
tensors are calculated as:
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where U; is the mean velocity component. Since a high
proportion of turbulent energy dissipation is due to the
small scales, additional terms were added to account
for the effect of the unresolved scales (see Salvetti and
Banerjee, 1995).

The SGS contribution, €545, can be either positive or
negative. When this quantity is positive, turbulent ki-
netic energy is transferred to the resolved scales, which
is known as backscatter. When it is negative, turbu-
lence energy is drained from the resolved scales and
this is termed forward scatter. If forward and back-
ward scatter are represented by e_ and €4 respectively,
they can be defined by

1
€+ = 3 (fsgs + |€sgs]) (6-a)

1
€- = 3 (€sgs — l€sgs]) (6-b)
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€+ is added to the production rate and e_ is added to
the dissipation rate.

Figures 8 to 11 shows the production and dissipation
rates obtained from the LES. The ordinate has been
normalised by u? /v where u, is the friction velocity; the
curves in the positive regions correspond to production
and those with negative values are the dissipation rates.
The results for the DSM are not shown since this model
had not shown good agreement with other data. The
time- and plane-averaged values of e_ were generally
around an order of magnitude greater than e and were
of the same order as the dissipation due to the resolved
scales, showing that the main effect of the unresolved
scales is to dissipate energy.

As previously mentioned, one commonly used ap-
proach to modelling fluid flows is the k — € model in
which the Reynolds-averaged form of the conservation
equations are solved together with equations for the
turbulent kinetic energy, k, and the dissipation rate, €.
This model uses a closure relation to express the tur-
bulent viscosity, v¢, in terms of k and e:

_ CuR?
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Whilst C,, is often taken to be a constant (a value of
0.09 is fairly typical), more complex relations are fre-
quently used, particularly for regions near boundaries.
The LES data were used to calculate the value of Cy,
as a function of distance from the wall and the values
obtained are plotted in Figures 6 to 8. Comparisons are
also made with the correlations of Kessler (1993) and
Lam and Bremhorst (1981). It can be seen that the
LES predicts a higher coefficient in the central region
of the flow, but falls off much more rapidly toward the
wall. The correlations were based on pressure driven
channel flows whereas Couette flow has a zero mean
pressure gradient and it could be that the turbulence
characteristics are more strongly influenced by the wall
in this case.

CONCLUSIONS

Large eddy simulations of plane Couette flow have
been performed for a range of Reynolds numbers and
the results have been in reasonable agreement with the
available experimental and DNS data. The variation of
the parameter C), in the k-e model with distance from
the wall was plotted and was found to diminish very
rapidly away from the core region of the flow. Pre-
vious correlations based on pressure-driven flows have
also shown this fall-off, but although they show the
same general shape, they are not in qualitative agree-
ment with the results found in this study. It could be
that this effect could be due to the different nature of
Couette flow, in particular the large structures found in
Couette flow which are not present in other boundary—
layer flows.



with no averaging of the parameters that fluctuate due
to the turbulent nature of the flow. This may be
thought of as the most accurate way to simulate the
flow, but in order to capture the effects of the small-
scale energy dissipating eddies, the grid spacing must
be comparable to the Kolmogorov scale throughout the
computational domain. The requirements on compu-
tational resources resulting from this constraint mean
that it is not currently feasible to use this approach
except for low to moderate Reynolds numbers.

Another popular approach is to apply Reynolds av-
eraging to the equations governing the flow. This in-
volves performing ensemble averaging on the equations
and this effectively smooths out the time-fluctuating
turbulent motions. The procedure leads to additional
stress terms in the equations which require modelling.
Some codes use algebraic formulae for these terms, but
there are a number of more mechanistic models avail-
able. Perhaps the most popular way of dealing with
these terms is to solve additional equations for the tur-
bulent kinetic energy and the rate of energy dissipation.

Large eddy simulation (LES) is intermediate between
these two approaches, and it is this technique with
which this paper will be mainly concerned. The equa-
tions of motion are spatially averaged over a small re-
gion — typically twice the grid spacing. The effect of
this is to filter out the small-scale, high wavenumber
fluctuations, but to preserve the larger eddies. Mod-
els are required for the effect of the unresolved eddies,
though since these are generally more isotropic and
homogeneous than the larger-scale fluctuations they
should, at least in principle, be more amenable to mod-
elling accurately. One important feature of this ap-
proach is that the necessary grid resolution is controlled
by the larger eddies rather than the smaller ones, so as
the Reynolds number increases, the computational re-
quirements do not increase as dramatically as in the
case of DNS.

In the work presented in this paper, LES using three
different models for the sub—grid scale (SGS) effects
were undertaken. The models used were the dynamic
sub-grid model of Germano et al. (1991) (DSM), the
dynamic mixed model (DMM) of Zang et al. (1993) and
the dynamic two-parameter model (DTM) (Salvetti and
Banerjee, 1995; Salvetti et al., 1997).

SIMULATIONS

The code of Zang et al. (1994) was used to perform
simulation of Couette flow using the models for the
sub-grid stresses mentioned above. An investigation by
Komminaho et al. (1996) suggested that a domain size
of 10 X 47 X 2 in the streamwise, spanwise and wall-
normal directions respectively would lead to only small
errors due to the use of a finite computational box size,
and these dimensions were adopted in this study. Sym-
metry boundary conditions were applied in the stream-
wise and spanwise directions and a no-slip boundary
condition was used for the remaining direction. Mesh

TABLE 1. NUMBER OF GRID POINTS AND SGS
MODELS USED.

| Re Grid points | SGS model
750 90 x 78 x 54 None
98 x 62 x 58
130 x 54 x 54

1300 | 90 x 78 x 62 | DSM, DMM, DTM
2500 | 90 x 78 x 70 | DSM, DMM, DTM
3750 | 90 x 78 x 82 DTM

points were evenly distributed in the streamwise and
spanwise directions; in the wall normal direction, the
spacing was arranged such that higher resolution would
be obtained near the boundaries.

In order to establish the grid resolution required to
accurately simulate the flow, the code was run for
a number of different mesh spacings for the lowest
Reynolds number case and the results compared with
the spectral DNS data of Komminaho et al.; in these
cases, the grid was sufficiently fine for the code to be
run as a DNS (i.e. with no subgrid-scale model). Ta-
ble 1 lists the resolutions used in these simulations. Fig-
ures 1 to 4 show the predictions obtained for all three
grids; in the legend, the numbers refer to the number
of grid points in the streamwise, spanwise and wall-
normal directions respectively. The wall-normal coor-
dinate is normalised by the channel half-depth. It can
be seen that there are slight departures from symmetry
and that there is an overprediction in the streamwise
turbulence intensity and underpredictions for the other
two components, especially where fewer grid points are
in the spanwise direction. However, the 90 x 78 x 54
case is reasonably satisfactory taking into account that
a finite-difference code is being used and comparison is
being made with the results of a much more accurate
spectral code.

Earlier LES with 34 grid points in both the stream-
wise and spanwise directions and the same domain size
showed significant deviations from the DNS behaviour.
This is due to turbulence structures extending across
the length of the domain and joining up with them-
selves (due to the periodic boundary condition) caus-
ing artificial forcing; this tendency is especially strong
if the domain size is too small or the resolution is too
coarse. The strategy followed for the LES was to fix
the resolution in the streamwise and spanwise direc-
tions at that which gave the most reasonable results for
the DNS, and to increase the Reynolds number, check-
ing that the results matched the available experimental
data. The number of grid points in the wall-normal
direction was varied so as to ensure that the near-wall
spacing (in terms of wall units) would be maintained; at
the wall, spacings of less than one wall unit were used.

The different simulations performed are summarised
in Table 1. For the cases at Reynolds numbers of 1300
and 2500, all three SGS models were used; for the high-
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Figure 2. Intensity of streamwise turbulence fluctuations.
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Figure 3. Intensity of spanwise turbulence fluctuations.
Re = 750
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Figure 4. Intensity of wall-normal turbulence Figure 7. Intensity of the turbulent fluctuations. Re =
fluctuations. Re = 750 3750
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Figure 5. Intensity of streamwise turbulence fluctuations. Figure 8. Production and dissipation of turbulent kinetic
Re = 1350 energy. Re = 750
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Figure 10. Production and dissipation of turbulent
kinetic energy. Re = 2500
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Figure 12. C, with grid of 90x78x54. Re = 750
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