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ABSTRACT

Turbulent Taylor-Couette flows between two cylin-
ders with the inner cylinder rotating are simulated us-
ing Direct Numerical Simulation (DNS) at a radius ra-
tio of 0.67 and at two Reynolds numbers to investigate
the Reynolds number effects on the flow. It is found
that the results are consistent with the experimental
results at the same radius ratio. Particular attention is

- given to the turbulent structures of the flows.

INTRODUCTION

Turbulent fows between coucentric long cylinders
with one or both cylinders rotating have been studied
first by Taylor (1935). Since then many experimen-
tal works have been conducted (Barcilon et al. 1979;
Koschmieder, 1979; Nakamura et al., 1981; Smith &
Townsend, 1982; to mention a few). Theoretically, the
flow is one of the simplest turbulent shear flows. Its sim-
plicity is comparable to that of turbulent pipe flows. In
the fully developed turbulent Taylor-Couette flows, the
Reynolds stresses depend only on radius, and the clo-
sure equations are all ODE. However, our understand-
ing towards the turbulent characteristics of this flow is
far less than that for unidirectional turbulent wall shear
flows, such as flows in pipes and channels.

Experimentally, it has been found (Gollub & Swin-
ney 1975; Koschmieder 1979; Barcilon et al, 1979;
Smith & Townsend 1982; Kobayashi et al 1990) that
with the outer cylinder stationary, the regular laminar
Taylor vortex flow persist to Taylor numbers of about
400 times the critical Taylor number 7. when laminar
Couette flow becomes unstable to small disturbances.
This is followed by irregular motions containing well-
developed toroidal eddies similar to the laminar Taylor
vortex. The experimental results of Smith & Townsend
(1982) using hot-wires by introducing a small axial ve-
locity show that at low Reynolds numbers the energy
carried by these toroidal eddies is high in comparison
with the total turbulent energy, and decreases as the
Reynolds number increases. Smith & Townsend (1982)
found that for their radius ratio of 0.67, the toroidal
eddies are still detectable at Rey = Vid/v = 100,000.
Here Vi = R, R, is the radius of the inner cylinder,

Q the angular speed of the inner cylinder, d = R2 — R;,
R, the radius of the outer cylinder, and v the kinematic
viscosity. At this Reynolds number, the Taylor num-
ber ratio is close to 2 millions. Kobayashi et al (1990)
made velocity measurements in the Taylor-Couette flow
of radius ratio 0.92 using wedge-typed two-port total
pressure Pitot tube for time-mean velocity and using
hot-wires for turbulent stresses. To prevent the Tay-
lor vortex shift in the axial direction, Kobayashi et al.
(1990) used a grid to position the vortex at the de-
sired location. They found that at Req = 63,000, the
strength of the toroidal eddies is several times stronger
than that of Smith & Townsend (1982) at Reg = 50,000

Numerically the Taylor-Couette flows have been
studied started from 1980’s. Moser, Moin & Leonard
(1983) applied their spectral method code to the Taylor-
Couette flow. Marcus (1984) did the Taylor-Couette
flow simulation to study the wavy-vortex with one trav-
elling wave. Coughlin & Marcus (1992) studied the
modulated waves in Taylor-Couette flow. Li (1998) pre-
sented the preliminary DNS results for radius ratio of
0.5 and Taylor number ratio of 1,300. He also shows
that the turbulent intensity profiles in turbulent Taylor-
Couette flow are very much different from those in uni-
directional turbulent wall shear flows, and explained
these differences using the energy budget equations.
Rudman & Blackburn (1998) simulated the turbulent
Taylor-Couette flow with counter-rotating cylinders for
radius ratios of 0.875 and 0.667.

In this paper, the DNS results for Taylor-Couette
flows at two Taylor number ratios of 1070 and 4280
are presented for a radius ratio of 0.67. The results
are compared with the experimental results, especially
those of Smith & Townsend (1982) at the same radius
ratio.

NUMERICAL CONSIDERATION

Figure 1 shows the schematic diagram of the flow
geometry in the present DNS simulation. Here the co-
ordinate systems are chosen as radius r, tangential 6,
and axial z with the corresponding velocity components
vr, v9 and v, respectively. The axial length of the sim-
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Figure 1: Schematic diagram of the flow geometry

ulation is L and the Taylor’s number is defined as

_2(1-79)

Here n = Ri1/Ra2.

The Navier-Stokes equations are discritized accord-
ing to the scheme proposed by Verstappen & Veldman
(1997) as:
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Here Re; = ViR:i/v, U the velocity vector, n the nth
time step, superscript * the intermediate time step, p
the pressure fluctuations, and At is the time step. With
a = 0.05, the time step is estimated according to

At = lvrl lvgl +|"z| + 4ﬂ 1 + 1 + 1 )
Ar rAf Az Rey ArZ rZA02 Az?

(5
and B8 = 1.0 as according to Verstappen & Veldman
(1997). This time step is twice of that with a = 0,
which is the discretization scheme used in Eggles (1994)
for pipe flow simulation and Li (1998) for turbulent
Taylor-Couette flow simulation.
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Figure 2: Normalized mean angular momentum

During simulation, periodic boundary conditions
have been applied in the tangential and axial direc-
tions and Dirichlet boundary conditions were applied
at the two cylinder surfaces. Initial conditions are the
laminar mean velocity with imposed disturbances gen-
erated from a random number generator. The numbers
of grid points used were 70 x 256 x 128 for the r, 6
and z directions, respectively. Uniform grids were used
in the tangential and axial directions and logarithmic
grid was used in the radial direction with smaller grid
spacing near the inner cylinder surface. iu this study,
turbulent Taylor-Couette flows at n = 0.67 were sim-
ulated with L = 4d, and at Re; = 5,000 and 10,000
respectively. These correspond to Taylor number ratios
of T/T. = 1070 and 4280. The simulations were per-
formed using a Pentium II computer and carried out for
over 165 and 250 nondimenstional time (tVi/Ri), re-
spectively, for flows at the two Reynolds numbers stud-
ied. .

RESULTS

Figure 2 shows the normalized mean angular mo-
mentum rV/R;Vi from the present DNS at Re; =
5,000 and 10,000 together with the experimental re-
sults of Li & Wu (1998), Smith & Townsend (1982)
and Kobayashi et al (1990). Both the experimental
data and the DNS results show that the mean angular
momentum decreases from its value at the inner cylin-
der surface to about half of that within a small viscous
layer. Over a large proportion of the gap width be-
tween the two cylinders, the angular momentum varies
only slightly, indicating the mean flow there is close to
a potential flow. Near the outer cylinder surface, the
angular momentum decreases rapidly to zero within a
viscous layer. From the DNS data, it can be clearly
seen that the effect of increasing Reynolds number is
to decrease the thickness of the two viscous layers near
the two cylinder surfaces.

In the central region between the two cylinders, the
present mean angular momentum results from DNS are
about 0.45. This is close to the experimental results of
Kobayashi et al (1990), but is less than 0.5 as given by
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. Figure 4: Contour plot of angular momentum at Re; =
Figure 3: Contour plot of angular momentum at Re; = 5,000. (a)r = 1.026; (b)r = 1.26.

10,000. (a)r = 1.026; (b)r = 1.26.

ter simulation time ¢ = 230R;/V; for Re; = 10,000For

the experimental results of Smith & Townsend (1982)
and Li & Wu (1998). One reason for this difference
could be that in the DNS simulation, L = 4d was
specified. This has restricted the wavelength for the
Taylor vortices to A = 2d (see the results given later).
Koschmieder (1979) found that the wavelength for tur-
bulent Taylor vortices is about 2.4d for = 0.727 when
T > 1007T.. This is substantially larger than the critical
wavelength of laminar Taylor vortices, which is close
to A = 2d at n = 0.67. As pointed out by Moser &
Moin (1986) a chosen domain length L and the periodic
boundary conditions in the axial direction will restrict
the wavelength of the Taylor vortices. This will un-
derestimate the strength and effects of the unrestricted
vortices since natural vortices which are free to form
with the preferred wavelength should have maximum
strength. Simulation at L = 4.8d is currently under-
taken to investigate the wavelength effect on the mean
angular momentum.

Another problem with the mean angular momen-
tum results is that it is still slowly decreasing even af-

example, from ¢ = 230R;/Vi to t = 257R;/V1, the
normalized mean angular momentum in the central re-
gion has decreased from 0.456 to 0.451. The decrease
is small but detectable. In the present DNS results,
t = 230R:/V1 ~ 486/V; for Re; = 10,000. Here ¢ is
half of the gap width between the two cylinders. This is
much longer than the 106/V; used in the channel flow
simulation of Kim, Moin & Moser (1986) and the pipe
flow simulation of Eggles (1994), and the 126/V, used
in the curved channel flow simulation of Moser & Moin
(1986). At tV, /6, =~ 10, the normalized mean angu-
lar momentum in the present simulation in the central
region is approximately 0.5, which is close to the ex-
perimental results of Smith & Townsend (1982) and Li
& Wu (1998). The reason for this slow but detectable
decrease in the mean angular momentum is currently
not clear.

The total shear stress profiles averaged over
20R;/V: show a constant torque transport across the
gap width and agree with the theoretical results that
in Taylor-Couette flows, torque transport is constant
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(Li, 1998). At Re; = 10,000, the normalized wall
shear velocity V,1/V1 at the inner cylinder surface is
3% less than the experimental results of Lewis & Swin-
ney (1998) at n = 0.724. Here V1 = \/7w1/p and 7u1
is the wall shear stress at the inner cylinder surface.
Also it is felt that the restricted wavelength of the tur-
bulent Taylor vortex will underestimate the wall shear
velocity.

Figures 3 (a,b) show the contour plots of angular
momentum vr at Re; = 10,000 and r = 1.026 and 1.26,
respectively. The corresponding y* = (r — R1) * V1 /v
and (Vr/ViR:) at these two locations are 14 (0.519)
and 135 (0.451), respectively. Figure 3a shows the ex-
istence of two high angular momentum bands, one is
located at z =~ 0.8 and the other at z =~ 1.8. Figure 3b
shows the existence of four bands, two with high angu-
lar momentum and two with low angular momentum.
The two high angular momentum bands are at the same
z locations as those in figure 3a, the two low angular
momentum bands are at z = 0.3 and 2z = 1.3. The lo-
cations of these bands depend on the initial conditions
during simulation, and are the outflow and inflow jets
refereed by Coughlin & Marcus (1992). The distance
between these bands are the same irrespective the ini-
tial conditions.

In comparison with the numerical results of Cough-
lin & Marcus (1992), the outflow and inflow bands
are not strongly wavy. Wereley & Lueptow (1998)
conducted experiments on the spatio-temporal charac-
ter of the non-wavy and wavy Taylor-Couette flow for
n = 0.83 using Particle Image Velocimetry (PIV). They
found that the azimuthal wave height h decreases with
increasing Taylor numbers. They showed that 1/d mea-
sured by the vortex center decreases from 0.65 to about
0.1 as the Taylors number increases from 47 to 1407,
without abating. The Taylor numbers of 1070 and 4280
in the present simulation are much higher than those in-
vestigated by Werely & Lueptow (1998), and it is clear
from figures 3 (a, b) that the large scale wavy azimuthal
vortices are not obvious, and it seems that they have
been succeeded by small scale turbulent motions near
the high and low angular momentum bands.

It can also be seen from figure 3a that narrow long
streaks similar to that observed in unidirectional tur-
bulent wall shear flows exist near the outflow jets. The
average length of the streaks is about 500v/V;1. These
streaks are not perpendicular to the z axis and the an-
gles between the streaks and the line normal to the z
axis are small. However such long streaks are not ob-
vious in figure 3b. This shows that the long streaks
shown in figure 3a are near wall turbulent structures.
Both figures 3a and 3b show that in turbulent Taylor-
Couette flows at the present Reynolds numbers investi-
gated, small scale turbulent motions mainly exist near
the inflow and outflow jets. In the center of the Taylor
vortex, the flow is relatively quiet. Because the convec-
tion of the flow by the Taylor vortex, it is expected the
turbulent motions near the inflow and outflow jets will
be able to mix with the near laminar flow near the cen-
ters of the Taylor vortex. The fact that only weak tur-
bulent motions exist near the vortex center shows that
the Taylor vortex has a stabilizing effects on turbulent
motions. This stabilizing effect can be understood by
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Figure 5: Velocity vector plot over r-z plan for Re; =
10,000. (a)the azimuthal average; (b)at § = w/2

using the Rayleigh criteria. The circulation around the
Taylor vortex increases from the center of the vortex
and becomes maximum midway between the neighbor-
ing vortexss. It is expected that at very high Reynolds
numbers, the turbulent mixing will be strong and the
stabilizing effect at the vortex centers will be small and
turbulent flow in the central region between the two
cylinders will be homogeneous in the axial direction.

Figures 4(a,b) show the similar plots as those of fig-
ures 3(a,b) at Re; = 5,000 and at r = 1.026 and 1.26.
From figures 3 and 4, the effects of increasing Reynolds
number on the turbulent structures can be clearly seen.
It can be seen from figures 3 and 4 that as the Reynolds
number increases, there are more small scale motions
near the outflow and inflow jets. In comparison with
figure 3a, figure 4a shows no apparent long streaks near
the outflow jet, this indicates that the long streaks in
figure 3a are also a result of increasing Reynolds num-
ber. In comparison with figure 3b, figure 4b shows that
the inflow jets at Re; = 5,000 may be wavy.

It is clear from figures 3 and 4 that small scale turbu-
lent motions exist and are concentrated near the out-
flow and inflow jets. Figures 3 and 4 show that the
turbulent Taylor vortices are ring shaped. Because of
these, azimuthal average can be taken. This azimuthal
average is equivalent to the conditional average taken
by Smith & Townsend (1982) using hot-wires by in-
troducing a small axial velocity. Figure 5a shows the
averaged velocity-vector plot over the r — z plane at
Re; = 10,000. Here the regular Taylor vortex can
be seen. Figure 5a shows that two vortex pairs exist
between the two cylinders, and the wavelength of the
Taylor vortex is 2d. Because L = 4d was specified in
the simulation, the wavelength of the Taylor vortex is
fixed. A close look at the vortex structures in figure 5a
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shows that they are different from those of laminar Tay-
lor vortices and are the toroidal eddies studied by Smith
& Townsend (1982) and Kobayashi et al (1990). Fig-
ure 5b shows the velocity vector plot at one azimuthal
location at Re; = 10,000. In comparison with laminar
Taylor vortex, turbulent Taylor vortices are not regular
and there are small scale eddies in them, especially in
regions where the local outflow jets exist. Coughlin &
Marcus (1992), from their investigation of modulated
waves in Taylor-Couette flow, concluded that the exis-
tence of jets between adjacent Taylor vortices produces
further instability. This is distinct from the centrifu-
gal instability which results in the generation of Taylor
vortex. The fact that the present simulation shows the
small scale motions concentrated near the inflow and
outflow bands supports the conclusions of Coughlin &
Marcus (1992).

Figures 6(a,b) show the contour plot of angular mo-
mentum vr over the same § = n/2 plane for Re;, =
5,000 and 10,000. Here the outflow and inflow jets can
be clearly seen. It can be seen from figure 6 that these
jets are strong and angular momentum in the jets has
been preserved over a long distance. In general, it can
be seen from figure 6 that the inflow jets can penetrate
closer to the inner cylinder surface than those of out-
flow jets to the outer cylinder surface. Comparing fig-
ures 6(a,b) also shows that at high Reynolds numbers,
the distance for the jets to preserve their angular mo-
mentum is shorter than that at low Reynolds number.
This is because that the higher the Reynolds number,
the stronger is the turbulent mixing. It can be seen
from figure 6a that the scales for the turbulent motions
near the outflow jet region and near the inner cylin-
der surface are smaller than those near the inflow jet
region and near the outer cylinder surface. Using the
analogy with unidirectional turbulent wall shear flows,
it can be assumed that the length scales of the small
scale turbulent motions near the wall are proportional
to the viscous length scale v/V;. For turbulent Taylor-
Couette flows, the wall shear velocity V2 at the outer
cylinder surface is related to that of inner cylinder sur-

face by
Ve = RyVy /Ry (6)

due to the constant torque transport. This shows that
the viscous length scale at the outer cylinder surface is
larger than that at the inner cylinder surface by a factor
of Rz/R;. Because of this difference in viscous length
scales near the two cylinder surfaces, it is possible that
the outflow jets become unstable to small disturbances
at smaller Reynolds number than that for the inflow
jets. Thus it is expected that the flow near the inner
cylinder surface and near the outflow jets is more tur-
bulent than that near the outer flow cylinder and near
the inflow jets for a given Re;.

DISCUSSION AND CONCLUSIONS

Direct numerical simulation has been performed for
turbulent Taylor-Couette flows with 7 = 0.67 and at
Re;y = 5,000 and 10,000. The mean angular momen-
tum results are consistent with the experimental results
of Kobayashi et al. (1990) The contour plots of angular
momentum show that strong inflow and out flow jets
exists. The results show that the inflow and outflow

0.91
0.83
0.75
0.67
0.59
0.52
0.44
0.36
0.28
0.20

“NWAOON®O D

150
(b)

Figure 6: Contour plot of angular momentum vr at
0 =m/2. (a) Re; =10,000; (b) Re; = 5,000.

jets are not the wavy vortex investigated by Cough-
lin & Marcus (1992), especially at high Reynolds num-
ber, and small scale turbulence exists near the jets. As
Reynolds number increases, the distance over which the
inflow and outflow jets preserve their angular momen-
tum becomes shorter. It is also shown that the flow
near the inner cylinder surface and near the outflow
jets is more turbulent than that near the outer cylinder
and inflow jets. Long narrow streaks are fond in the
outflow jet region and near the inner cylinder surface
at high Reynolds number. These streaks are similar in
shape and length to the streaks observed in near wall
regions of the unidirectional turbulent wall shear flows.
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