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ABSTRACT

Direct numerical simulation results are used to study
compressibility effects on turbulent energy growth in
homogeneous shear flow. Normalized amplitude of the
pressure fluctuations is shown to decrease as the turbulent
Mach number increases. This decrease causes the reduction
in the pressure-strain term, changes the anisotropy of the
Reynolds stress, and reduces the growth rate of turbulent
kinetic energy as is the case of mixing layers. The
transport equation for the pressure variance is examined in
detail. It is shown that when the turbulent Mach number is
high the pressure-variance dissipation term is not
negligible and contributes to the reduction in the pressure
fluctuations. The pressure-variance dissipation is closely
related to the high-wavenumber part of the pressure-
variance spectrum. Profile of the spectrum is observed to
depend on the turbulent Mach number. A statistical theory
is applied to obtain model expressions for the pressure-
variance dissipation and the pressure—dilatation
correlation.

INTRODUCTION

It is known that compressibility effects on turbulence
in high-speed boundary layers and channel flows are due
to the mean density and temperature variations (Lele
1994, Bradshaw 1996). Mean velocity profile can be
derived from the Van Driest transformation of that in
incompressible turbulence. Effects of the density and
pressure fluctuations are very small. On the other hand,
significant compressibility effects on turbulence are
observed in high-speed mixing layers; the growth rate of
thickness decreases as the Mach number increases.
Similarly, the growth rate of turbulent kinetic energy in
homogeneous shear flows is reduced as the turbulent Mach
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number increases. These reductions cannot be explained
by the mean density variations; it is closely related to the
density and pressure fluctuations.

Sarkar (1995) performed a direct numerical simulation
(DNS) of homogeneous shear flow. He showed that the
reduced growth rate of turbulent kinetic energy is not due
to explicit dilatational effects but primary due to the
reduced level of turbulence production; that is, the
anisotropy of the Reynolds stress is changed due to
compressibility effects. Vreman et al. (1996) used DNS to
study the reduction in the growth rate of mixing layers.
They showed that reduced pressure fluctuations are
responsible for the change in growth rate via the
pressure—strain term. Their results suggest that the
behavior of the pressure fluctuations needs to be studied
further to better understand compressibility effects.

Yoshizawa (1992, 1995, 1998) used a statistical theory
called the two-scale direct-interaction approximation
(TSDIA) to derive compressible turbulence models. He
pointed out that compressibility effects are tightly linked
with the density fluctuations and proposed a three-
equation model that consists of the transport equations for
the turbulent kinetic energy, its dissipation rate, and the
density variance. However, Bradshaw (1996) pointed out
that the density variance is not necessarily a good
descriptor of compressibility effects. DNS of
compressible channel flows with non-adiabatic walls
showed that the density fluctuations can exist with little
compressibility effects (Coleman et al. 1995, Huang et al.
1995). This is because the density fluctuations consist of
the acoustic and entropy modes in general and the latter
mode is dominant in channel flows. We cannot
distinguish the two modes using the density variance
only. Recently, using the TSDIA Rubinstein and
Erlebacher (1997) derived transport coefficients in weakly



compressible turbulence. Instead of the density they
adopted the pressure and the entropy as primary variables
to clearly distinguish acoustic and entropy-related effects.

In this work, paying attention to the role of the
pressure fluctuations we investigate compressibility
effects in homogeneous shear flow. Following Hamba
(1999) we study the reduction in the growth rate of
turbulent kinetic energy using DNS data. We examine the
transport equation for the pressure variance to understand
the mechanism of reduced pressure fluctuations. We also
apply the TSDIA to obtain model expressions for the
pressure-variance dissipation and the pressure—dilatation
correlation. To improve the analysis by Hamba (1999) we
take an ensemble average to obtain better statistical
quantities, examine the decomposition of the pressure—
strain term in detail, and modify the model for the
pressure-variance dissipation.

DNS RESULTS

The present simulation was performed in a 128° spatial
grid in a cube of 21 using the spectral and third-order
Runge-Kutta methods. Physical quantities are normalized
by the mean density p and the mean speed of sound C
where the mean is defined as a volume average over the
computational domain. The mean velocity is U;=Sx,
where S is a constant shear rate. Initial velocity
fluctuations are solenoidal; initial pressure fluctuations
are calculated from the incompressible Poisson equation
(see Hamba (1999) for details). The initial values of the
microscale Reynolds number and the nondimensional
shear rate were set to Ry=24 and SK/e=7.1, respectively.
We investigate two cases in which the initial turbulent
Mach number were set to M=0.1 and 0.3, respectively.
For each case we perform five runs with different random
numbers for the initial velocity fluctuations. We average
results from five runs to obtain better statistical
quantities.

It is well known that the growth rate of turbulent kinetic
energy K is reduced due to compressibility effects (Sarkar
1995). In the present simulation the growth rate in the
case of M;=0.3 decreases by 30% compared to the case of
M =0.1. Sarkar (1995) showed that the reduction in
growth rate is primarily due to the reduced level of
turbulence production. The production rate is proportional
to the Reynolds shear stress (u';u',) because the shear rate
S is constant. To clarify the reasons for the reduced shear
stress we examine its transport equation normalized by
SK:
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where €, and I1, are the (1,2) components of the
dissipation and pressure—strain tensors defined as
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Figure 1. Time history of terms in the (u';u’;) equation.
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Figure 2. Time history of terms in the (u',%) equation.
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respectively. Figure 1 shows the time history of the terms
in the (u'ju',) equation for M;=0.1 and 0.3. Here and
hereafter, the quantities whose time history is plotted are
averaged from t-At/2 till t+At/2 where At=0.12Ky/g, so
that the trend of temporal evolution is emphasized by the
reduction of oscillations. Since the viscous dissipation
term €, is very small it is not plotted; the other three
terms are shown in the figure. Since the shear stress is
negative, a negative time-derivative term means a
positive growth rate; it is slightly smaller for M=0.3
than for M;=0.1. Both the production and pressure-strain
terms decrease their amplitude as M, increases. Since the
pressure-strain term is positive its reduction acts as a
gain in the shear-stress amplitude. Therefore, the decrease
in shear-stress growth rate is due to the reduced level of
the production term -(u',2)/K.
Then, we examine the transport equation for {u',%):
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Figure 3. Time history of r.m.s. of the pressure
fluctuation.
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Figure 4. Time history of r.m.s. of the velocity gradient.
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Figures 2 shows the time history of the terms in the above
equations for M=0.1 and 0.3. It is clearly seen in Fig. 2
that the primary reason for the decrease in (u',%) is the
reduced level of the pressure—strain term IT,,. Therefore, it
is necessary to investigate compressibility effects on the
pressure-strain term to understand the mechanism of the
reduction in turbulent energy growth rate.

Although we should examine the transport equation for
the pressure-strain term as a next step, the equation is too
much complicated compared to that for the turbulent
energy component. Instead, we examine the pressure—
strain term by decomposing it into three parts: the r.m.s.
pressure fluctuation (p'2)1’2, the r.m.s. velocity gradient
((du',/9x,)*)""?, and the correlation coefficient
Rpu22=H22/[(p'z)”2((8u'2/8x2)2)”2]. Figure 3 shows the
time history of the r.m.s. pressure fluctuation {p'>)"’?
normalized by p K for M=0.1 and 0.3. The fluctuation for
M=0.3 decreases as time goes by whereas that for M=0.1
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Figure 6. Time history of terms in the pressure-
variance equation for M=0.1

keeps nearly constant value in the average. Figure 4
shows the r.m.s. velocity gradient for M=0.1 and 0.3.
This quantity is greater for M=0.3 than for M=0.1.
Figure 5 shows the correlation Ry ,, for M;=0.1 and 0.3.
The correlation is nearly the same for the two cases.
Therefore, the reduced pressure fluctuations are the reason
for the decrease in the pressure—strain term.

To clarify the mechanism of reduced pressure
fluctuations in the homogeneous shear flow we examine
the transport equation for the pressure variance. For
homogenous shear flow the transport equation can be
written as

%@'2) =-¢, - 2yP(p'd’)+Res. @)

where d=V -u' and Res. denotes residual terms whose
values are negligible compared to the main three terms.
The pressure-variance dissipation ¢, is defined as
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Figure 7. Time history of terms in the pressure-
variance equation for M;=0.3
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Figure 8. Spectrum of the variance of the compressible
velocity pressure component at St=4 and 8.
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Figures 6 and 7 show the time history of the three terms in
(4) for M=0.1 and 0.3, respectively. In Fig. 6 the
dissipation term ¢, is small compared to the pressure
dilatation; the temporal evolution of the pressure variance
is determined solely by the pressure dilatation. On the
other hand, in Fig. 7 the absolute value of g, is
comparable to the pressure dilatation. In addition, the
growth rate of pressure dilatation is reduced for M=0.3
compared to the case of M=0.1. Therefore, large value of
the dissipation €, as well as reduced growth rate of
pressure dilatation are the reasons for the reduced pressure
fluctuations for M;=0.3.

Here, we focus on the pressure-variance dissipation €,
Using a statistical analysis we can estimate the
dissipation as follows:

=2ty =il 22PN o Y [ dk k2
€, =2(Y 1)1<<aXi Bxi> 20y 1)Pr jo dkk*E, (k) (6)

where P(=V /%) is the Prandtl number and E,(k) is the
three-dimensional spectrum of the pressure variance. We
divide p' into the incompressible part p's and the
compressible part p'. and assume each spectrum in the
inertial range as

E, (k) = E (k) + Epo (k) @)
where
Epo(K) o<k @®)
E o (k) = p2C2E (k) oc k537 ©)

In (8) Batchelor's spectrum is adopted for the spectrum of
the incompressible component. In (9) the spectrum of the
compressible component is assumed to be proportional to
the compressible energy spectrum E (k); parameter o
denotes the deviation from the Kolmogorov spectrum.
The relation E,(k)=p > T *E(k) means a balance between
the acoustic potential and kinetic energies for dilatational
fluid motions. Since the integrand in (6) contains k%, the
high-wavenumber part of E,(k) can contribute to the
integral. Substituting (7)—(9) into (6) and integrating up
to the Kolmogorov wavenumber kd(=e“4v'3/4) we find that
the contribution of Eps(k) to g, is of O(v U2y it is
negligibly small at high Reynolds numbers. The
contribution of E, (k) to €, depends on «; if o= 0 then g,
is of O(1) whereas if o>2/3 then Epc(k)<Eps(k) and €, is of
o).

Figure 8 shows the spectrum E (k) at St = 4 and 8 for
M=0.1 and 0.3. Although the power of the spectral forms
cannot be evaluated from these profiles due to low
Reynolds numbers, we can see a qualitative difference
between M=0.1 and 0.3. The spectrum E, (k) rapidly
decays as k increases for M=0.1; the profile corresponds
to large value of o that causes small value of €,. On the
other hand, the high-wavenumber part of E, (k) for
M=0.3 keeps relatively large values that contribute to €,.

The high-wavenumber part of E (k) is similar to the
corresponding spectrum E; (k) (not shown). This means
that the potential and kinetic energies almost balance at
high wavenumbers. Using the eddy-damped quasi-normal
Markovian (EDQNM) theory Bataille and Bertoglio
(1993) showed that the compressible energy spectrum
E.(k) is proportional to k!> if M, is not very high
whereas it tends to the Kolmogorov spectrum kP as M,
increases to 1. Their results mean that o decreases from 2
to 0 as M, increases. Such dependence of the spectrum
E (k) on M, can explain the difference in E.(k) between
the cases of M;=0.1 and 0.3.
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dissipation for M=0.1.
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Figure 10. Time history of the pressure-variance
dissipation for M=0.3.

TURBULENCE MODELING

Here, we make an attempt to model pressure-related
terms using the TSDIA. The procedure of TSDIA analysis
is explained in Hamba and Blaisdell (1997) and Hamba
(1999). First, we investigate the pressure-variance
dissipation €,. The model expression for €, can be given
by

“1e¢ 2
Ceply (p’")

forM, 2M
P, K t t0

a2
Cept = 1—8“1’( JROLMDI2 gor 0 <M, <M,
r

(10)

where Cg,; and M,, are nondimensional model constants
and ReT=K2/(ev). The factor (y-1)/P, in (10) is originally
included in the definition for €,. The part Csp,(elK)(p'z)
has the same expression as that for the scalar-variance
dissipation in incompressible turbulence. The part of R,
is added by considering the dependence on v as was
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Figure 11. Time history of the pressure—dilatation
correlation for M=0.1.
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Figure 12. Time history of the pressure—dilatation
correlation for M=0.3.

discussed in the previous section. If M, is high and a=0 in
(9) then g, does not depend on V; if M, is low and
E,,(k)>E,(k) then €, should be of O(v'?). '

Figures 9 and 10 show the time history of &, for M=0.1
and 0.3, respectively. The constants C¢,;=1.3 and
M,;=0.3 are chosen so that results from the model and the
DNS agree with each other at St>7 for both cases.
Although the result at St<7 for M=0.3 overestimates the
DNS data, the difference between the two cases can be
expressed by introducing the R, part. .

Next, we examine the pressure dilatation because it is
significant for the development of pressure fluctuations.
Although the pressure dilatation may be negligible in the
K equation, it plays an important role in the (p'’)
equation. The model expression for the pressure dilatation
is given by

s D _ _ aU;
(p'd)=-(1- de3Xp)|:de1Mt2 D PK) +dezYPM%KanJ
1

1)



where
%p =(p"*)/(2p*C*K) (12)

The nondimensional parameter ,, is a normalized pressure
variance that corresponds to the ratio of potential to
kinetic energy for weak fluctuations. If we neglect y, and
approximate D(p K)/Dt by p (Pg-€) then the expression
(11) is almost the same as the model derived by Sarkar
(1992).

Figures 11 and 12 show the time history of the pressure
dilatation for M=0.1 and 0.3, respectively. The model
constants are set to C,q;=1.3 and C,43=7 so that the
overall agreement is good between the model and DNS
results. The second term in the brackets in (11) vanishes
for homogenous shear flows because of no mean-velocity
divergence. If x, is negligible the pressure dilatation is
proportional to D(EZKZ)/DL Substituting this form into
(4) and assuming €,=0 gives (p'’)~ p°K? that
approximately holds for M;=0.1 as shown in Fig. 3. The
factor 1-C43X, represents the compressibility effect; that
is, the growth rate of pressure dilatation is reduced for
M =0.3 compared to the case of M=0.1. The part
involving D(pK)/Dt represents nonequilibrium
properties. For boundary layers and channel flows the
value of D(p K)/Dt is negligible; the pressure dilatation is
so small that it causes little pressure fluctuations. On the
other hand, for homogenous shear flows and mixing
layers D(Pp K)/Dt has some positive values; resulting
negative pressure dilatation produces some amount of
pressure fluctuations that contribute as the
compressibility effect.

CONCLUSIONS

DNS of homogeneous shear flow was performed to
investigate compressibility effects on turbulent energy
growth. The normalized level of pressure fluctuations was
shown to decrease as M, increases. As is the case of
mixing layers, this decrease causes the reduction in the
pressure—strain term, changes the anisotropy of the
Reynolds stress, and reduces the growth rate of turbulent
kinetic energy. We examined the transport equation for
the pressure variance to find that its dissipation term
contributes to its reduction when M, is high. The pressure-
variance dissipation is closely related to the high-
wavenumber part of the pressure-variance spectrum; if the
spectrum is proportional to that for incompressible
turbulent energy, the dissipation can be so large that it
affects the evolution of the pressure variance. In the DNS
the spectral form of the pressure variance is shown to
depend on M,.

The pressure—dilatation correlation is important in the
transport equation for the pressure variance. The model
expression for the pressure dilatation obtained from the
TSDIA contains the material derivative of turbulent
kinetic energy. This term represents nonequilibrium or

unsteady properties of turbulent field and can explain the
different compressibility effects between homogeneous
shear flow and boundary layers.
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