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ABSTRACT

This is a phenomenological study of the interaction
between a shock and a separated boundary layer us-
ing Large Eddy Simulation (LES). The geometry is the
NACA 0012 profile. The computational Mach number
is 0.799 and the angle of attack is 2.26 degrees. The sim-
ulations are done at different Reynolds numbers, 3-10°,
5.10° and 1-10°%. The subgrid-scale (SGS) effect are
accounted for through the inherent dissipation of the
numerical algorithm and an anisotropic dynamic diver-
gence subgrid-scale model (DDM). The amplitude and
the frequency of the shock movements are reported. It
is found that the DDM is too active in the region where
the shock is located giving rise to an overestimate of
SGS-turbulence. There is a certain periodicity in the
shock movements. One of the dominating frequencies
is shown to be related to the late stage of the transition
process.

INTRODUCTION

For design and performance purposes it is important
to understand how the shock interacts with the bound-
ary layer. Therefore it is of interest to predict not only
the mean location of the shock but also with which
frequency and amplitude it moves around its mean po-
sition. If the shock is strong enough the flow separates
due to the adverse pressure gradient. The pressure in-
side the separated region is higher than for attached
flow. The separation also increases the drag. Hence,
movements of the shock will affect the lift coefficient
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and the drag coefficient. The operating range of a wing
is given by these two coefficients and the fuel consump-
tion is directly related to the drag. The main problems
associated with separated transonic flows are due to
difficulties in modelling the turbulence in and near sep-
arated regions, determining the location of transition
(Wilcox 1993) and determining accurately the shock
location. Dynamic large eddy simulations have the po-
tential to handle these problems (Germano et al. 1991).
The flow under consideration is highly anisotropic. The
proximal wall region of turbulence in boundary layer
flows is anisotropic due to the constraint a wall imposes
on the flow. The flow in the vicinity of the shock will
also experience anisotropy. Subgrid-scale models with
only one model parameter implicitly assume isotropy
in the subgrid-scales. This problem is less pronounced
if the flowfield is well resolved because the scales be-
come more and more isotropic with higher wave num-
ber. The resolution requirement may be eased using
a model which admits anisotropy in the subgrid-scales.
Held and Fuchs (1997) developed such a model, the dy-
namic divergence model (DDM). The DDM contains
three parameters, one in each spatial direction, admit-
ting anisotropic turbulent viscosity.

FORMULATIONS

The governing equations for turbulent flows are
the Navier-Stokes equations, mass and energy balance
equations together with an equation of state. In large
eddy simulations of turbulent flows, each variable in
the flow domain, D, can be decomposed into a large
scale component and a subgrid-scale component. This
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is obtained by filtering the flow variable such that

B(x, t) = g(xv t) + ¢,(X, t) (1)

and
d(x,t;A) = / G(x — x'; 8)p(x', t)d°x’ (2)
D

where & is the large scale component, ¢’ is the subgrid-
scale component, -G—(x —x'; A) is the filter function and
A is the filter width, normally taken as the grid size.
By using density weighted space averages, defined in an
analogous manner to the Favre time average, the gov-
erning equations in Cartesian coordinates can be writ-

ten as
Continuity
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where u; are the CarteSJan veloc1ty components, o;; is
the molecular stress tensor, Cp is the specific heat at
constant pressure, ® is the viscous dissipation and k is
the thermal conductivity. Here, Cp is assumed to be
constant. The last term on the righthand side of the
momentum equations is the divergence of the subgrid-
scale stress tensor.

OTij _ Jpu;u; _ aﬁiﬁﬂ} ©6)
Ox; Ox; Ox;
Dynamic Divergence Model (DDM)

Following Germano (1991) a test filter is introduced.
The test filter width should exceed the grid filter width.
A relation for the resolved turbulent stress, i.e. the tur-
bulent scales between the two filter levels, can be ex-
plicitly expressed. This relation is called the Germano

identity.

Liy=T; -7, (7)
Test filtered variables are denoted by a caret, (*). The
model parameters in the DDM are obtained by apply-
ing the divergence operator to the Germano identity.
In this way the three model parameters are expressed
directly and independently. Using the divergence oper-
ator to contract the expression for the resolved turbu-
lent stress is a natural choice since it is the divergence
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of the subgrid-scale stress which enters into the momen-
tum equations for the motion of the resolved scales.

OLy _OT; 0% _ o{plad; —4d)} o
dz; ~ Oz, Ox; Ox;
The divergence of the subgrid-scale stress and the sub-
test filter stress are modelled by taking the divergence

of the compressible generalisation of the Smagorinsky
model (Erlebacher et al., 1990).
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Note that no summation over the superscript, (1), is
carried out. The three model parameters, C*), are cal-
culated during the simulation from the instantaneous
flow field by combining Eq.s (8) - (10).

aLi; [0z,
8Bik [0k — O[Oz

To avoid unphysical values the model parameters C(*)
are set to zero if ||0Lij/0z;|| < €, where € is a small
value related to the numerical accuracy of the computed
results. i.e. the model parameters are forced to be zero
if there is no resolved turbulence. This is consistent
with the assumption of scale-similarity of the turbulent

ct = (11)

stresses which the Germano identity is based on.

NUMERICAL METHODS

The calculations are performed with a finite volume
based Navier-Stokes solver for general structured multi-
block meshes. The scheme is based on a central formu-
lation with second and fourth order dissipation terms.
The discretisation, both in time and space, is of sec-
ond order. An implicit time marching procedure is em-
ployed (Eliasson and Nordstrém, 1995).

Boundary Conditions

Riemann invariants are used as farfield boundary
conditions (Hirsch, 1990). Periodic conditions are im-
posed in the spanwise direction. A no-slip condition is
imposed on the wing surface. To resemble the exper-
iment conducted by Harris (1981) a disturbance was
introduced at X/C = 0.05 by adding a source term in




e m u ions. -
the momentum equations. The source term may be re
garded as "numerical grains”.

SIMULATIONS

Large eddy simulations of transonic flow around a
rectangular wing section (NACA 0012) are investigated.
An implicit SGS-model, where the subgrid-scale effect
is implicitly accounted for through the inherent dissi-
pation of the numerical algorithm, and the DDM are
employed in this paper. The following simulations have
been carried out

o Re =3-10°, Implicit
e Re=3.10°, DDM
e Re =5-10°, Implicit
e Re =1-10°% Implicit
The pressure distributions are compared with experi-

mental data obtained by Harris (1981) for a Reynolds
number of 3 - 10°.

The Grid

The grid is a body-fitted C-mesh with 257x57x9
nodepoints in the streamwise, normal and spanwise di-
rection respectively. The strecthing factor in the nor-
mal direction to the wing is 1.12.

Bounds

To ensure numerical stability the model parameters
have to be bounded. Olsson and Fuchs (1994) investi-
gated different local bounds. Based on their work the
artificial bounds were initially calculated as follows.

<o <« 22
C R (12)

where Re is the Reynolds number based on the chord
length and freestream values. However, due to stability
problems the lower bound was changed to —0.0025/ Re
indicating that the numerical value of the bound is ad
hoc. Note that negative values of the model parameters
imply back-scatter of energy from the subgrid-scales to
the resolved scales. The upper bound is purely numer-
ical and depends on the timestep.

RESULTS

Fig. 1 and 2 show the mean pressure coefficient dis-
tribution and the mean skin friction coefficient distribu-
tion respectively. The flow under consideration is highly
Reynolds number dependent in the range investigated
here. In fact Held and Fuchs (1998) showed that as
the the Reynolds number was increased the position of
the shock approached the experimental value obtained
by Harris (1981). Held and Fuchs (1998) also showed
that the flow is more or less inviscid upstream of the

shock. The laminar boundary layer separates due to
the strong shock on the upper surface. Further down-
stream the boundary layer reattaches and undergoes
transition to turbulence. Notable is the discrepancy of
the predicted pressure coefficient and skin friction cal-
culated with the DDM and the implicit model at the
position of the shock.

RMS of the fluctuating pressure coefficient and skin
friction coefficient are shown in Fig. 3 and 4, respec-
tively. Note that the skin friction coefficient and RMS
of the skin coefficient fluctuations will decrease with in-
creasing Reynolds number (decreasing viscosity). The
peak in the RMS of Cr' at X/C = 0.05 is due to
the forced disturbance. The second peak is a result
of shock wave movements. The RMS values indicate
that the separated region behind the shock is lami-
nar. Thereafter the RMS values increase due to transi-
tion/turbulence.

In order to follow the position of the shock the point
most upstream and closest to the surface fulfilling a su-
personic Mach number upstream and a subsonic down-
stream is traced. This point is obtained through linear
interpolation. Fig. 5 shows the instantaneous Mach
iso-contours for a Reynolds number of 3-10° calculated
with the implicit model. There is no distinct shock
wave. Part of the ”main” shock is released as shock-
lets interacting with the boundary layer while travelling
downstream. Due to difficulties in defining the shock
wave at a Reynolds number of 3 - 10°, the shock wave
movements are calculated only for the higher Reynolds
number where the shock is more distinct. The Fast
Fourier Transform (FFT) of the shock movements for a
Reynolds number of 5-10° and 1-10° are shown in Fig.
6 and 7 respectively. There is a certain periodicity in
the shock movements. The dominating frequencies are
around 40 Hz and 455 Hz for Reynolds number of 5- 10°.
For Reynolds number 1-10° the dominating frequencies
are around 35 Hz and 455 Hz with harmonics.

For Reynolds number 5-10° the mean position of the
shock is at X/C = 0.14 and for Reynolds number 1-10°
at X/C = 0.22. The RMS of the amplitude of the shock
movements is only 2.7 per cent of the chord length in
both cases. However, the maximum amplitude is as
large as 10 per cent of the chord length in both cases.

Fig. 8 shows the kinetic energy of the fluctuations as
a function of frequency at X/C = 0.5 which correspond
to the point where the RMS of Cp and Cj increase
rapidly. The late stage of the transition is associated
with growth of fluctuations of frequencies around 450-
550 Hz. Fig. 9 shows the kinetic energy of the fluctu-
ations at X/C = 0.6. Note the amplification and that
all frequencies are present. The energy spectrum of the
turbulent kinetic energy at X/C = 0.6 for a Reynolds
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number of 5 - 10° is shown in Fig. 10. The Kolmogorov
-5/3 decay is also depicted. The resolved inertial sub-
range is contained within one decade of frequencies.

CONCLUSIONS AND DISCUSSION

The DDM affects mean properties such as mean Cp
and mean Cr at the position of the shock. This indi-
cates that the model is active in this region, giving rise
to unreasonbly large SGS-turbulence. Of course, the
whole idea of SGS-stress tensor having an asymptoti-
cally decaying (as a function of wave length) is incorrect
near/across shocks. In fact the assessment of the SGS
effects by using double filters is possible only when the
resolved scales are filter-independent, which is not the
case near the shock. The calculations here, are aimed at
pointing out this difficulty. The bounds in the present
form are user input and hence ad hoc. The following
modifications of the model are considered. The pressure
switch used for the second order numerical viscosity
term may be used to avoid filtering close to the shock.
The lower bound will also be modified. One suggestion
is that the total dissipation (molecular, subgrid-scale
and numerical dissipation) should be positive (Olsson
and Fuchs, 1994).

The shock boundary layer interaction is extremely
complex at the lower Reynolds number investigated
here. There is no real distinct shock wave. Shock-
lets are released from the "main” shock. The shocklets
interact with the boundary layer while travelling down-
stream. At higher Reynolds number the shock is more
pronounced.

There is a certain periodicity in the shock move-
ments. One of the dominating frequencies (455 Hz) is
related to the late stage of the transition process. How-
ever, it’s not clear if the shock movements trigger the
transition or the other way around.

Even if the RMS value of the amplitude of the shock
movements is small the maximum amplitude is large.
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Figure 1: The chordwise pressure distribution on

the upper surface.
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Figure 2: The chordwise skin friction coefficient dis-

tribution on the upper surface.
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Figure 3: The RMS of pressure coefficient fluctua-
tions on the upper surface.
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Figure 4: The RMS of skin friction coefficient fluc-
tuations on the upper surface.

Figure 5: Instantaneous Mach iso-contours for a
Reynolds number of 3 -10°. The sonic line (dashed
line) is depicted.
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Figure 6: Fast Fourier Transform of the shock
movements for a Reynolds number of 5 - 10°.
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Figure 7: Fast Fourier Transform of the shock

movements for a Reynolds number of 1 -10°.
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Figure 8: Kinetic energy spectrum of the fluctua-

tions at X/C=0.50 for a Reynolds number of 5-10°.
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Figure 9: Kinetic energy spectrum of the fluctua-
tons at X/C=0.60 for a Reynolds number of 5-10°.
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Figure 10: Kinetic energy spectrum of the fluctua-
tons at X/C=0.60 for a Reynolds number of 5-10°.

The Kolmogorov -5/3 decay is depicted.
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