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ABSTRACT

Direct numerical simulation is utilized to generate statistics
in particle-laden homogeneous plane strain turbulent flows.
Assuming the two-phase flow to be dilute (one-way coupling),
a variety of cases are considered to investigate the effects of
the particle time constant. The carrier phase is incompressible
and is treated in the Eulerian frame whereas the particles are
tracked individually in a Lagrangian frame. For small particle
Reynolds numbers, an analytical expression for the particle
mean velocity gradient is found, which is different from the
fluid one, and the dispersed phase is shown to be homoge-
neous. This is not the case for particles with large Reynolds
numbers and no statistics involving the particle fluctuating ve-
locity is presented for large particles. The results of the simu-
lations are utilized to investigate the particle velocity autocor-
relation, the turbulence kinetic energy, the Reynolds stresses,
and the dispersion function.

INTRODUCTION
With the increase of the interest in mathematical model-

ing of two-phase turbulent flows, there has been associated a
growing demand for experimental and numerical studies that
could lead to a more profound physical understanding of these
flows in addition to a reliable data bank for model valida-
tion. During the past two decades direct numerical simula-
tion (DNS) has emerged as an attractive means for generating
accurate and detail information in turbulent flows with sim-
ple geometries. In our previous works (Taulbee et al., 1997;
Mashayek et al., 1998), we have utilized DNS for the investi-
gation of particle-laden isotropic and homogeneous shear tur-
bulent flows. Our experience in implementing the DNS results
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for both development and assessment of turbulence models
has also been very encouraging (Mashayek et al., 1998). Here,
we use the Fourier pseudospectral method for DNS of another
mode of distortion, i.e. the irrotational plane strain flow. A
very interesting feature concerning these flows is that the par-
ticle does not have the same mean velocity as its local fluid.
Therefore, the DNS of these flows can be used to not only
investigate the effects of the mean velocity gradients, similar
to those observed in turbulent shear flows (Liljegren, 1993;
Wen et al., 1992; Simonin et al., 1995; Taulbee et al., 1997),
but also to study the effects of a slip velocity between the
particle and its surrounding fluid. The latter effects can be
compared to the effects of gravity in isotropic turbulent flows
which involve the ‘crossing-trajectories effect’ and the asso-
ciated ‘continuity effect.’

FORMULATION

This work deals with the dispersion of solid particles in
a homogeneous plane strain turbulent flow. It is assumed that
the two-phase flow is dilute, thus the effects of the particles on
the carrier phase are neglected (i.e. one-way-coupling). The
carrier phase is incompressible and is treated in the Eulerian
frame and the particles are tracked in a Lagrangian manner.
The continuous carrier phase is assumed to be a Newtonian
fluid with constant density (ps) and viscosity (). With the
assumption of one-way coupling, the transport of the carrier
phase is not influenced by the presence of the particles, and
is described via the Eulerian continuity and momentum equa-
tions:
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where ~ denotes the instantaneous variable, x; and ¢ are the
spatial and temporal coordinates, respectively, and U; and P
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indicate the fluid instantaneous velocity and pressure, respec-
tively. All the variables are normalized by the reference length
(Lo), density (pg), and velocity (Up) scales. The length scale
is conveniently chosen such that the normalized volume of
the simulation box is (2m)3, and the fluid density is used as
the scale for density. The velocity scale is found from the
specified box Reynolds number, Reg = poUpLo/p.

To configure the plane strain flow, the carrier phase is sub-
jected to a uniform mean strain in two directions such that:
(7,' = Sx18;1 — Sx28;2 + u;, where §;; is the Kronecker delta
function and u; is the carrier phase fluctuating velocity. The
magnitude of the imposed strain is given by S = oU; /dx; =
—aU, /0xy = const., where U; =< U; > denotes the Eulerian
ensemble-mean (denoted by < >) velocity. The geometry is
defined by the Cartesian coordinates x; (stretched direction),
x3 (squeezed direction), and x3 (invariant direction). With this
mean velocity gradient, Lee and Reynolds (1985) show that
the turbulence is homogeneous. Such a flow is, in concept,
unbounded, however, in numerical simulations a finite domain
may be considered by applying periodic boundary conditions
which allows utilization of the Fourier spectral method. This
is accomplished by solving the governing equations for fluctu-
ating velocities on a grid which deforms with the mean flow.
This transformation has been discussed in detail by Rogallo
and Moin (1984) and is only summarized here. A compu-
tational (deforming) coordinate system, x',., is related to the
fixed (non-deforming) system through x',- = Bjj(t)xj where the
transformation tensor is defined as:

BY, exp(—St) 0 0
Bij(t) = 0 BY,exp(St) O )
0 BY,

where superscript ‘0’ refers to the value of B;;j at¢ = 0. Apply-
ing the transformation, the governing equations for the carrier
phase in the deforming coordinate system are expressed as:
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The solid particles are assumed to be spherical with diam-
eter smaller than the smallest length scale of the turbulence.
Since the volume fraction of the dispersed phase is small, the
particle-particle collisions can be neglected. The particle den-
sity is much larger than the fluid density such that only the
drag force and inertia are significant to the particle dynamics.
Therefore, the Lagrangian equations of motion for the discrete
particles reduce to:
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where )?, and V, are the particle instantaneous position and
velocity, respectively. The superscript * indicates the fluid
variable evaluated at the particle location. The particle time

116

constant for Stokesian drag of a spherical particle is defined
as T, = Reop,,dg/ 18 where p, and d), are the nondimen-
sional particle density and diameter, respectively. The par-
ticle variables are normalized using the same reference scales
as those used for the carrier phase variables. The parame-
ter f=1+ 0.15Re3‘687 describes an empirical correction to
Stokesian drag for large particle Reynolds numbers (Rep =
Regdp|U; — Vi|) and is valid for Re, < 1000 (Wallis, 1969).

We have seen that the carrier phase is homogeneous and
that provided a linear transformation, periodic boundary con-
ditions can be applied to the turbulent plane strain flow. The
extension of this transformation to the dispersed phase, how-
ever, is not straightforward as the particles do not have the
same mean velocity as that of the carrier phase. To make this
point clear, we consider the average particle momentum equa-
tion:
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where %7 = g; +V; 3% the notation < >> denotes the ensem-

ble average associated with the dispersed phase, and V; (=<
V; >) and v; are the particle mean and fluctuating velocity, re-
spectively. It is noted that, if U/ stands for the Eulerian mean
fluid velocity at the particle position, V; = U is not a solu-
tion to (5) except for T, — 0. As a result, there always exists
a relative mean velocity between the two phases which can
result in large particle Reynolds numbers, especially far from
the origin.

For small particle Reynolds numbers, letting f = 1 in the
averaged particle momentum equation (5) leads to:
p'v; 1

v;
o =, > ©

3
Provided that the initial particle velocity fluctuation is
isotropic and the initial particle mean velocity is such that
Va(0) = 60x4(0) where 63 is a constant (0. = 1,2,3 with no
summation on Greek indices), Barré (1998) shows that the fol-
lowing propositions are equivalent: (i) The dispersed phase re-
mains homogeneous. (ii) The correlation < v ,% > is iden-
tically zero. (iii) 30 V¢ Vi (xj,) = Oo(t)xo. The proof of the
above statements is very lengthy; we refer to Barré (1998) and
here only present the final results for the mean velocity of the
dispersed phase in tables 1-3.

The knowledge of the particle mean velocity allows the
calculation of the statistics involving the particle fluctuating
velocity for cases with small particle time constant. The an-
alytical solution for the mean velocity of small particles also
shows the existence of a critical particle time constant (de-
noted by 1, in tables 1-3) beyond which the particles follow
an oscillatory trajectory about the elongated (x;) axis. For
large particles, the empirical correction added to the drag co-
efficient prevents a homogeneous solution for the dispersed
phase. The results generated for large particles are mainly
used to study the dispersion characteristics of the particles.



Table 1: Particle mean velocity in x;-direction.

Vi(t) = 01(1)x1, 01(0) = o)
condition on T, | initial condition solution for V1 ; (¢)
o) —
mexp(n) + ¢! _23 £1 exp(Ert)
any T, o) #&; o1(t) = 0'0—1]11
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) & —of
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Table 2: Particle mean velocity in x;-direction.

Va(t) = 02(t)x2, 62(0) = 069

condition on T, | initial condition solution for V5 ()
oy —M2
nzexp(nat) + 22— Erexp(€ar)
0 - §2-0)
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Table 3: Particle mean velocity in x3-direction.

V3(t) = 03()x3, 03(0) = 03
condition on T, | initial condition solution for V3 3(t)
exp (;)
- P
any T, 0 #0 o3(t) = 157,0] -
o —Tpexp| —
O3 Tp
03=0 03(t)=0
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RESULTS

A Fourier pseudospectral method with triply periodic bound-
ary conditions is employed for the spatial representation of
the fluid velocity and pressure. Temporal advancement of the
Lagrangian particle equations is done by the second-order ac-
curate Adams-Bashford method. In order to evaluate fluid
variables at the particle locations a fourth order accurate La-
grange polynomial interpolation scheme is employed. The
initial conditions for the plane strain runs are obtained by
preliminary simulations of homogeneous decaying turbulence
(Lee and Reynolds, 1985). During the plane strain runs, the
computational domain becomes elongated (shortened) in the
direction of positive (negative) mean strain rates. To allow
the simulations continue for a longer time, we implement a
predistorted initial mesh with short side in the direction to be
elongated by positive mean strain rate and vice versa. For
the carrier phase, the initial aspect ratio for the computational
domain is 1/2:2:1 (BY, =2, B}, = 1/2, B); = 1), and at
the final simulation time this becomes 2:1/2:1 (Bj; = 1/2,
By =2, B33 = 1). If we define the reference total strain as
¢ = exp(St), each strain run is performed until the reference
total strain reaches approximately 4.

For a given mean strain rate (S = 0.739), we have consid-
ered eight cases to investigate the effects of the particle time
constant, using 1.2 x 105 particles on 96> grid points. For all
the simulations p, = 721.8 is used. The mean velocity gradi-
ent of the dispersed phase is initially imposed as:

& 0 0
vy@=( 3 -5 0 Q

In this manner, for homogeneous dispersed phase V; j(t) =
V;,j(0) =const. for any ¢, if i # 2 and j # 2. Also,
Va2(t,Tpy) < Va,2(8,Tp,) if Tp; < Tp, for the range of time
considered in the present simulations. To demonstrate the ac-
curacy of the single phase flow simulation, the present DNS
results were compared to those from the DNS of Rogallo and
Moin (1984) and Lee and Reynolds (1985), and the experi-
ment of Tucker and Reynolds (1968).

First, we discuss the results for cases in which the dispersed
phase can be considered homogeneous. For these cases, the
Lagrangian autocorrelation coefficient of the particle velocity
is defined as:

L vo(to)valto +1t) >
2 1 2 1
KL Vvi(tg) I v (to+1t) >2

Roo(t) = a=1,23 (8

where fo is the time at which we start computing the La-
grangian statistics. Since the turbulence is non-stationary, the
value of Roq depends on the choice of #. The total time in
our plane strain simulations is somewhat short, therefore, we
choose to take #y = 0 which is the starting time for plain strain
simulations. The autocorrelation coefficient for various T,
values are shown in Fig. 1 along with that of the massless fluid
particle. It is observed that, for short dispersion times, the
‘memory’ of the particle to its previous velocity is increased as
the particle inertia increases, thus increasing the autocorrela-
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Figure 1: Effect of 7, on the particle velocity autocorrelation
and comparison with the fluid velocity autocorrelation.

tion coefficient. For T, > 1, ., (= 0.338) the magnitude of the
particle autocorrelation exceeds that of the fluid particle. At
later times, the autocorrelation of these heavier particles cross
over that of the fluid such that at long times the particle veloc-
ities are less correlated than the fluid velocities. This is again
due to the particle inertia. Atlong times, the solid particle con-
tinues to interact with new fluid elements and thus R, decays
at a faster rate than that of the fluid. In all three directions, a
crossing is observed for the autocorrelation curves of various
Tp. The crossing occurs sooner in the x;-direction and for
the autocorrelation curves of T, = 0.112 and 1, = 0.225. This
suggests that particles with high inertia change their surround-
ing fluid more rapidly and tend to lose correlation with their
previous velocity faster than a lighter particle does. In plane
strain flows, the particle mean velocity depends on the parti-
cle time constant and in our simulations the relative mean ve-
locity between the particle and its surrounding fluid increases
with the increase of T,. Thus particles with higher inertia are
more subjected to ‘crossing-trajectories’ effects than lighter
ones, and the decay rate of Roq increases with T, at long times
causing the autocorrelation to become smaller for larger parti-
cle time constant. Figure 1 also shows that the autocorrelation
of the particle velocity in the shortened direction (xy) is larger
than that in both elongated (x;) and spanwise (x3) directions.

The effects of the particle inertia on the evolution of the
particle turbulence kinetic energy appear in Fig. 2. All the
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Figure 2: Temporal variations of the turbulence kinetic en-
ergy for the fluid (k) and the particles (k) for different values
of the particle time constant.

kinetic energies shown in this figure are normalized by kg, the
turbulence kinetic energy of the fluid at the initial time. It is
observed that during the early dispersion times, the normal-
ized particle turbulence kinetic energy is larger than the fluid
one, and increases with the increase of particle inertia. Later,
the fluid turbulence kinetic energy starts to level off and kp
continues to decay at a faster rate than k. Because the decay
rate of kp is larger for smaller inertia particles, the time at
which the particle turbulence kinetic energy decreases below
that of the fluid is shorter for smaller particles. At long dis-
persion times, the particle turbulence kinetic energy increases
over that of the fluid for all cases. Increasing the particle time
constant results in a larger growth rate for the particle turbu-
lence kinetic energy for long times.

The temporal variation of the normal Reynolds stresses of
the fluid (< uZ >) and particles (< v& ), and the fluid-
particle velocity covariance (K ugVe, >>) are shown in Fig.
3. The particle Reynolds stress in xy-direction (< v% >)is
strongly affected by the mean velocity gradient. It is con-
siderably larger than the corresponding fluid-particle velocity
covariance (< u3v, ), and exceeds the fluid Reynolds stress
(< u% >). These features are even more pronounced when the
particle time constant increases. It is also observed that an in-
crease of particle inertia decreases the fluid-particle velocity
covariance, below the value of < u% >, due mainly to strong
decorrelation of the fluid and particle velocity at larger T,.
These results are in general agreement with theoretical results
of Reeks (1993) and Liljegren (1993) regarding the effect of
a mean fluid velocity gradient on the streamwise particle ve-
locity variance in shear flows. However, the non-zero mean
fluid velocity gradient component in the stretched direction
(U1 = S) does not affect < v3 >> similarly to that in the
squeezed (xp) direction. In the analysis of Liljegren (1993)
the term responsible for the increase of the streamwise par-
ticle velocity variance above the fluid one is proportional to
—V1,2 € vivg > which is positive in the case of shear flow.
Here, the fluid mean velocity gradient results in a positive par-
ticle mean velocity gradient component V; ;. Thus, the term
—V1,1 < V3 > in the transport equation of < v} >> behaves
like a dissipation and decreases. the particle Reynolds stress
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Figure 3: Temporal evolution of the Reynolds stress compo-
nents of the fluid and the particles and the fluid-particle co-
variance. Hollow and filled symbols refer to the fluid and the
fluid-particle, respectively. (a) T, = 0.112, (b) T, = 0.225.

in x;-direction below that in x3-direction. Moreover, V1 1 is
larger than Uy, and increases with particle inertia. This could
explain that the particle velocity variance in the elongated di-
rection is smaller than the fluid one and decreases with in-
creasing T, (although a direct analogy with Liljegren (1993)
theory is not attempted here). In the spanwise direction, the
particle velocity variance is not directly affected by the mean
velocity gradients and consistent with the results for shear
flow in the normal or spanwise directions, it remains below
the corresponding fluid turbulent stresses and, given sufficient
development time, becomes nearly equal to the fluid-particle
velocity covariance. An inspection of Fig. 3 shows that the
particle velocity variance in the spanwise direction decreases
when the particle time constant increases.

In order to quantify the dispersion of the particles, the dis-
persion function (or r.m.s. displacement) of a solid or fluid
particle in the xq-direction is calculated from:

1
1Y o inj\2]
v (B0-x) ] )

where N is the total number of particles in the flow field at

time ¢, 2&'? is the instantaneous position of particle (i) at time
t, and X is the injection location of the same particle. Here,
we consider both the homogeneous and the inhomogeneous
dispersed phases. Figure 4 shows the variation of the dis-

persion function with time for various particle time constants

Daa(t) =
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Figure 4: Dispersion function for fluid and solid particles for

different particle time constants; particles injected at Xli"j =

0.01, X" = 0.01, and X;" = .

for an injection location close to the x3-axis (X;"/ = 0.01,
X, =0.01, X3/ = m). The dispersion function generally
increases with time since the particles disperse increasingly
farther from their injection location. At earlier times, the dis-
persion seems to be the highest for 1, = 0.112, whereas at
longer times the fluid particles exhibit the highest amount of
dispersion. It is observed that for long times the dispersion
in x; and x3 directions decreases significantly as the inertia
increases. The reason is that, as the turbulence fluctuations
grow in time, it becomes more difficult for larger particles to
follow the turbulent motions. This is similar to the results cal-
culated by Yeh and Lei (1991) in the case of homogeneous
turbulent shear flows.

CONCLUSION

Results obtained by direct numerical simulation (DNS)
have been used to investigate particle-laden homogeneous
plane strain turbulent flows. An analysis of the averaged equa-
tions of motion for the dispersed phase indicates that there
is always a relative mean velocity between the particle and
its surrounding fluid. Under the assumption of small particle
Reynolds number, the dispersed phase is shown to be homo-
geneous and an analytical solution is found for the particle
mean velocity. This allows the calculation of the statistics in-
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volving the particle fluctuating velocity for cases with small
particle time constant. The analytical solution for the mean
velocity of small particles also shows the existence of a criti-
cal particle time constant beyond which the particles follow an
oscillatory trajectory about the elongated (x;) axis. For large
particles, the empirical correction added to the drag coefficient
prevents a homogeneous solution for the dispersed phase. The
results generated for large particles are mainly used to study
the dispersion characteristics of the particles.
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