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ABSTRACT

A number of gradient-diffusion models of turbulence
predict a constant value for the kinetic energy of turbulence
in the central region of plane Couette flow, in clear contrast
with experimental and DNS results. It is shown in this paper
that the gradient-diffusion approach is responsible for this
result through a realizability condition of no counter-gradient
diffusive transport.

In the case of the k- model, it is shown the proportionality
factor, C,, , used in the definition of the eddy viscosity, is not

a constant but a function of the strain rate parameter S~
(Hallbick et al, 1996) and of the production-dissipation ratio
A=P/¢g. By assuming A to depend only on of the strain
rate parameter, C, may be expressed as a function of S°,

in a way similar to that of Shih et al (1995).

Henry & Reynolds (1984), through an analytical solution,
have concluded that two gradient-diffusion models really
predict the constant energy value. It is shown here that the
aforementioned solution is incorrect and that, on the other
hand, a correct analytical solution may be obtained if the
right level for the value of C, is adopted.

INTRODUCTION

It is now rather well known that a number of gradient-
diffusion models of turbulence (Schneider, 1989), including
standard k-g model, anisotropic k- models (see e.g. Nisizima
& Yoshizawa, 1987), both algebraic and differential
Reynolds stress models, with and without wall reflection
terms , and even third-order closure models (see Amano &
Goel, 1987) predict a constant value for the turbulent energy
in the fully turbulent central region of plane Couette flow.

In the present paper, it is shown that the gradient-diffusion
approach for the turbulent flux of kinetic energy of the

turbulence implies a realizability condition of no counter-
gradient diffusive transport, and that the constant value of the
turbulent kinetic energy is a consequence of this realizability
condition.

In the case of the k-¢ model, this realizability condition
reduces to a condition for the minimum value of the kinetic
energy of the turbulence which is directly related to the value
of C,, the proportionality factor used in the definition of the

eddy viscosity, being normally taken as the constant value
0.09. This value has been adjusted mainly by means of data
from pressure driven shear flow experiments like channel
flow. In this paper, it is shown that C, cannot be a constant

and, by means of the experimental data of El Telbany and
Reynolds (1982), the correct estimate of C, across the

channel is obtained (Fig. 2). This estimate is approximately
twice the standard value of 0.09, disclosing by this the reason
of k-¢ model of tending to predict values of € smaller than
P which force the kinetic energy of turbulence to become
constant.

Henry & Reynolds (1984) have shown that it is possible to
obtain an analytical solution with two different gradient-
diffusion models applied to turbulent Couette flow.
Unfortunately, the problem was incorrectly solved, and the
conclusion that the solution requires the kinetic energy of
turbulence to be constant in the fully turbulent central region
of the flow is not valid. In the present paper, it is shown that
a solution different from the trivial constant-energy solution
is possible provided that correct level for the value of C, is

adopted. The geometrical definitions of the flow for the
analysis to follow are given in Figure 1.

NO COUNTER-GRADIENT TRANSPORT CONDITION
The transport equation of turbulent kinetic energy, &, is
given by (see e. g. Hallbéck et al, 1996)
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where P is the production rate of kinetic energy, & its
dissipation rate, J,, its turbulent transport flux and v ok /ox,,

its molecular transport flux. The turbulent transport flux term
is usually modelled as having a form similar to that of the
molecular transport flux term through a scalar or tensor eddy
diffusivity (see e. g. Hallbéck et al, 1996). Owing to the fact
that in the case of turbulent plane Couette flow the tensor
eddy diffusivity adopts a scalar form, only a scalar eddy
diffusivity will be considered in the analysis to follow.
Multiplying the form of equation (1) corresponding to the
case of turbulent plane Couette flow by the sum of the
modelled and molecular transport fluxes, and integrating
between the channel center-line and an arbitrary vertical
position within the fully turbulent core of the flow, gives

v, \dk ’ J"‘(y)
v+——|—| =
g, dy ko
wherev, is the eddy diffusivity, o, the Prandtl-Schmidt
coefficient and k, the value of k at the channel center-line.

2(v+—‘:T—J(£—P)dk, @
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Actually, (v+v, / O'k) is fairly constant within the fully

turbulent core of the flow, and (dk/ dy) is zero at the channel
center-line and monotonously increasing with distance from
the center-line (see El Telbany & Reynolds, 1982). Thus, the
left hand-side of (2) may be integrated within the fully
turbulent core of the flow, between two arbitrary vertical
positions, the first closer to the channel center-line, and the
result should always be greater than zero.

Then, according to the gradient-diffusion model
approximation, the rate of dissipation & has to be grater than
or, at least, equal to the rate of production P, at each point
within the fully turbulent core of the flow. If the turbulence
model tends to predict values of & less than the
corresponding P values, condition (2) forces £ to be equal
to P, implying that (dk/dy)=0 and k = constant, since
otherwise (dk/dy) or v, , or both, should have to become

complex. That ¢ should be greater or at least equal to P
within the fully turbulent core of the flow, seems well born
out by the DNS results of Andersson et al (1992) and
Komminaho et al ( 1996). Unfortunately, these DNS results
have been obtained for rather low Reynolds numbers

(¥* <~100 at the channel center-line) and the relatively

high Reynolds number experimental results of El Telbany
and Reynolds (1982) did not include any estimate of the
dissipation rate & . Even if there are strong indications of the
non-existence of counter-gradient diffusion transport for
higher Reynolds numbers (Andersson et al, 1992), the issue
is still not completely settled. The work of Pattisson et al
(1999) with LES applied to plane Couette flow constitute the
first stage in an attempt to simulate the flow at higher
Reynolds numbers and be able to elucidate this matter.

THE VARIABLE NATURE OF C,
The proportionality factor, C,, used in the definition of

the eddy viscosity of the k- model, has normally been taken
as a constant, with a value of 0.09 adjusted by means of data
from pressure driven shear flow experiments like channel
flow. Using the definition of the production rate P, i. e.

k? .
P=2v,5,S, = cﬂg(;; 2S,,s,,] =Cels°f,

where S, is the mean strain rate tensor, S™ = k,/25,S, /&

the strain rate parameter, C, may be obtained as

4

with A4 = P/ ¢ as the production-dissipation ratio. By means
of the experimental data of El Telbany and Reynolds (1982),
and assuming at each point across the channel the same
production-dissipation ratio A as in Andersson et al (1992),
an estimate of C, has been obtained and is shown in Figure

2. The corresponding C, estimate for the case of plane

Poiseuille flow, based on the DNS data of Kim et al (1987)
and the experimental data of Laufer (1951), is also shown in
the same figure. As may be observed from this figure, C, is

not constant across the channel, being the estimate for
Couette flow almost twice the standard value of 0.09. Even
the estimate for Poiseuille flow displays large variations
across the channel, being less than half the standard value
across a large region of the channel.

The experimental estimates of A and S* for Couette and
Poisueille flows based on the aforementioned experimental
and DNS data are given in Figure 3. The doted curves
correspond to S™ (upper curve) and A (lower curve) for plane
Poiseuille flow. The dashed curves correspond to S” (upper
curve) and A (lower curve) for plane Couette flow. The
inspection of the curves for each flow suggests that they are,
for values not close to zero, proportional to each other over a
large portion of the channel, except at the region close to the
walls where their relationship should be determined by the
wall conditions. Due to the fact that the models analysed in
this paper are high Reynolds number models, the
proportionality assumption seems enough accurate. For
values close to zero, a quadratic dependence of A on S°
seems appropriate. Here, the following relationship is
suggested

2= 4,5 expla,s” +A,(S‘)’), )

where A4, =-1/3, A4,=-0.05 for both flows and
A, =1.83/3 for Couette flow and 4, =1/3.1 for Poiseuille
flow. The different values of the coefficient A4, reflect the

fact that proportionality factors between A and S~ are
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different for the two flows, as may be observed from Figure
3. If no such a difference with coefficient 4, is made, and
the proportionality factor chosen is that for plane Poiseuille
flow, C, will be underpredicted for plane Couette flow, as is
the case with the model of Shih et al (1995). In other words,
the proportionality factor depends on the presence of a
pressure gradient and A cannot be modelled only by a
dependence on the strain rate parameter S~ .
Finally, C, adopts the following form as function of S~

_4 expl4,5" + 4, (S‘)z).

C, 5

(6)

ANALYTICAL SOLUTION OF k-¢ MODEL

In the case of standard k-¢ model, the aforementioned
realizability condition reduces to the following condition for
the kinetic energy of the turbulence, when v is neglected in
relation to v, and k is non-dimensionalised with the

friction velocity u, ,

k> . @)

If the standard value C, =0.09 is considered, condition (7)

gives k" >10/3. Both experiments (El Telbany & Reynolds,
1982, Bech et al, 1995) and DNS results (Andersson et al,
1992, Bech et al, 1995, Komminaho et al, 1996) indicate that
k should be smaller than this minimum value in the central
region of the flow. This implies that values of ¢ smaller than
the corresponding P values tend to be predicted but cannot
be obtained by the model. Therefore, no other alternative
than the prediction of a constant kinetic energy level, with
the minimum value given by (3), is left for the model.
However, this problem may be simply resolved by adopting
the correct level of C, given in Figure 2.

Two of the aforementioned gradient-diffusion models were
analytically analysed by Henry & Reynolds (1984). In
general, the analysis is even valid for other gradient-diffusion
models using tensor eddy diffusivity since the tensor
diffusivity is reduced to a scalar form when applied to plane
Couette flow. Unfortunately, the exponents of the Frobenius
expansion for dk*/dy (y non-dimensionalised with the

channel half-width %) obtained by Henry & Reynolds
(1984), i. e. 7/8 and 5/8, were not the correct values. It is not
difficult to prove, for instance by means of the symbolic
computation system Maple V (Heal et al, 1996), that the
correct exponents are instead 1 and 1/2.

An alternative, easier way of obtaining the analytical
solution for this case is to solve for ¢*, non-dimensionalised

with the friction velocity u, and the channel half-width
h . The method of Frobenius gives the exponents 1/2 and 0,
and the following general expansion for &*

N A5 ) b,k =k ). 8
£=Da (e -5 +Z E-&y. @
&* isrelated to dk* / dy by the expression
+ 2 +
8+ Cﬂ(k ) dk (9)

T ele) @

where g(k*) for the case of the k- model is given by

g(k*)=20'k(k*—k§{cﬂ () +k°+3k++(k3)2 -1]. (10)

All the coefficients for n>1 in the series expansion (8) may
be expressed in terms of a, and b, (see e. g. Bender &
Orszag, 1987). Then, it may be easily shown that if b, =0
and g, #0, all the derivatives of k* with respect to y at
the channel center-line will be zero, implying that k* =k,

over the fully turbulent central region of the flow. If, on the
other hand, g, =0 and b, # 0, all the odd derivatives of £*
with respect to y at the channel center-line will be zero,
implying that k* # constant over the fully turbulent central
region of the flow and symmetric with respect to the channel
center-line. From (9) and (10), it is possible to observe that a
real solution of the problem will obtained only if condition
(7) is satisfied. If the value C, =0.16 is chosen based on the

experimental indications shown in Figure 2, the following
result, truncated to the 7% power, is obtained if the standard
values of the k-¢ model constants are used together with

ki =258, i.c.

&' =b,(1-3.61(k* —kJ )+8.45(c* —k; f
~28.04(k* kg § +112.97(k* ~ &7 )’
~503.00(k" ~ & f +2381.67(" ~k; ) ).

1n

The value of the coefficient b, is determined by setting

&* ~10 for k* =3.3, which corresponds to the value of the
kinetic energy at y* ~ 100, i. e. well within the log-region of
the wall boundary layer. In this case b, =0.019 , which also

is the value of £* at the channel center-line. The result has
been plotted in Figure 4.

CONCLUSIONS

The question of constant kinetic energy at the fully
turbulent central region of plane Couette flow being
predicted by a number of gradient-diffusion models has been
elucidated in the present work by showing that it is originated
by a realizability condition inherent to the gradient-diffusion
approach.

1217



This realizability condition implies no counter-gradient
turbulent transport in the fully turbulent central region of the
flow, an issue that is still not completely settled even if
strong indications exist that support this assertion (Andersson
et al, 1992). The work of Pattisson et al (1999) with LES
applied to plane Couette flow constitute the first stage in an
attempt to simulate the flow at higher Reynolds numbers and
be able to elucidate this matter.

In the case of standard k-¢ model, the aforementioned
realizability condition has implications in the value of the
constant C, . By showing the dependence of this “constant”

on the strain rate parameter S° and on the production-
dissipation ratio 1= P/¢&, an experimental estimate of has
been obtained indicating that the correct level of C, for

plane Couette flow is approximately twice that of the
standard value. The proportionality between A and
S” suggested in this paper is not general enough since it
depends on the presence of a pressure gradient.

Finally, if this estimated level of C, is used together with

the correct exponents of the Frobenius expansion, an
analytical solution different from the constant-energy value
may be obtained in a way similar to that developed by Henry
& Reynolds (1984). In the present paper, only the explicit
expression for £* has been presented but, there is no doubt
that, through relation (9), it is possible to obtain an
expression for k* which is different from the constant-
energy value.
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Figure 1. Geometry definition.
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Figure 2. C, as a function of § * across the channel.

The upper curves correspond to Couette flow and the
lower curves to Poiseudille flow. The solid lines show the
approximation according to (6) and the dashed lines the

Lambda, S*
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Figure 3. A and S* distributions across the channel.
Doted curves correspond to S~ (upper curve) and A
(lower curve) for Poiseuille flow. Dashed curves
correspond to S™ (upper curve) and A (lower curve) for

Couette

estimate from experiments.
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flow. Approximation (5) is given by solid lines.
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Figure 4. £ as a function of £ according to (11).

1219



