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ABSTRACT

Lagrangian behaviors of solid particles released in an
axisymmetric submerged water jet impinging onto a
horizontal plane surface have been studied numerically. The
impinging jet flow (Re=13,000) is represented using a
modified k-& turbulence model proposed by Kato and
Launder (1993). Trajectories and velocities of the particles
are calculated using a one-way coupling Lagrangian eddy-
particle interaction model based on Schuen et al. (1983). The
assumption of isotropy of local fluid velocity derivatives is
made to model the added mass term and the pressure
gradient term in the particle equation of motion. Thousands
of glass particles (particle to fluid density ratio, p,/p~2.6) of
1.05 mm diameter are released at the exit of the jet. The
mean and root mean square (RMS) velocities of particles
simulated are in good agreement with experimental data
obtained with a stereoscopic particle tracking technique.

INTRODUCTION

An axisymmetric turbulent jet impinging vertically onto a
surface produces high levels of heat and mass transfer in the
stagnation region, having many industrial applications, for
example, internal cooling of gas turbine blades, cooling of
electronic devices and drying of paper and textile products.
In some applications, introducing small solid or liquid
particles into the flow pursues further augmentation of heat
and mass transfer. The impinging jet flow produces highly
complex turbulence, exhibiting non-isotropic nature of
turbulent fluctuations, strong deceleration of the jet toward
the impingement wall, radial acceleration of the wall jet after
impingement, steep streamline curvature in the stagnation
region and considerable variation of the static pressure in
that region. Therefore, impinging jet flows offer a
challenging test case for examining overall prediction
capability of Lagrangian eddy-particle interaction models to
simulate behaviors of particles in turbulent flows.

Before performing simulations of the motion of particles,
the turbulent flow itself (primary flow) must be well
represented. For its representation, the turbulence models
based on the Reynolds averaged Navier-Stokes (RANS)
equations have relatively low cost of computation and can be
applied to a wide range of geometries and higher Reynolds
numbers in comparison with Direct Numerical Simulation
(DNS) or Large Eddy Simulation (LES). It is, however,
known that the standard k-& turbulence model produces
excessive turbulence energy generation in the stagnation
point, leading to high values of turbulence kinetic energy in
this region. Kato and Launder (1993) proposed a modified -
¢ turbulence model by replacing the generation of turbulence
energy by a modified equation, which is shown to lead to
more satisfactory predictions in the stagnation region of
impinging jets. This model is adopted in the calculation of
the primary flow in the present simulation. More advanced
and complex models are available in the literature, for
example Launder (1996), but they were out of the scope of
the present simulation.

Eddy-particle interaction model is a Lagrangian approach
used to track particles in the simulation of flows laden with
particles. See Grahan and James (1996) for more details.
Given initial conditions of velocity and position, the motion
of a single particle is calculated by allowing this particle to
interact successively with discrete eddies, each eddy having
a characteristic size, lifetime and RMS velocity. In order to
have velocity statistics, thousands of particles must be
released individually in the flow. Their trajectories are
calculated by solving the particle equation of motion. When
particle concentration is low, the primary flow is not affected
by the presence of the particles. This approach is referred to
as the one-way coupling. The two-way coupling deals with
the mutual interaction between the primary flow and the
particles, approach used when concentration of particles is
high. The present simulation considers low particle
concentration conditions, and hence the one-way coupling
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approach is adopted.

Avila and Cervantes (1995) studied numerically the heat
transfer augmentation in a turbulent particulate flow. The
pipe flow was calculated by using a standard k-& turbulence
model, and the particulate phase was calculated using a
Lagrangian eddy-particle interaction model. Shuen et al.
(1983) simulated the primary flow, using a k-¢ turbulence
model and studied the particle dispersion in a turbulent
round jet. Most of the previous studies considered only the
drag force and the gravity in the particle equation of motion.
This approach is valid only when the density ratio between
fluid and particles is high (p,/0>>1).

The present study aims at verifying the applicability of the
one-way coupling Lagrangian eddy-particle interaction
model to the prediction of behaviors of glass particles
released in a submerged water jet impinging onto a
horizontal plane surface. The measurement for comparison
was done with a stereoscopic particle tracking technique so
as to capture highly three-dimensional motions of the
particles near the impingement wall. The present paper
reports the details of the numerical work, in which the effect
of the added mass term and the pressure gradient term in the
particle equation of motion is taken into account. These
terms, which does not play an important role for the high-
density ratio case (p,/p>>1), were not explicitly examined
in most previous predictions. Proper implementation of
those terms into the Lagrangian eddy-particle interaction
model is proposed, and calculated trajectories and velocities
of particles are shown to be in reasonable agreement with
the measured results.

IMPINGING WATER JET (PRIMARY FLOW)

The mean velocities, the turbulence kinetic energy and the
rate of turbulence dissipation of an impinging water jet flow
were calculated using a modified 4-¢ turbulence model
proposed by Kato and Launder (1993).

The production of turbulence kinetic energy, £, is given by

Po=-uuS,. ()
where the mean strain tensor is defined as
S, =(U,/ox,+3U,/0x,)/2. 2

On the axis of the impinging jet flow, the symmetry
conditions lead to

P, = —2(w'2 - u")(aU/ar) s 3)
where u and w denote radial and axial (=wall-normal)
velocity components, respectively (refer to Fig. 1). Nishino
et al. (1996) reported that negative production could occur
near the impingement wall whereu?>w? due to strong
inhomogeneity of turbulence. However, the eddy viscosity
hypothesis expressed by

~u'u; =2v,S, ~2k5,/3 )
results in the following relation:

P, =2vS}, )
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which is always positive and leads to an excessive
production of & near the impingement wall.

In order to circumvent this problem, Kato and Launder
(1993) intuitively proposed the use of the following
expression for the production of &:

P =2v,SQ, (6)

where $=(S;%)"2, Q=(Q,?)"” and the mean vorticity tensor is
defined as
Q; =(0U,/ox;-0U,/ox,)/2. @
As the flow in the stagnation region is basically
irrotational, Q is expected to become small enough to
suppress the excessive production of &, while there is little
influence on simple shear flows. Fundamental equations for
the k-&£ model can be expressed by the following equation:

B(rg) | Ot + (W) 13z +3(rUg) | dr =

(T apl8z) 0z + (T aplor)lor+X. ®)

where ¢, I' and X are summarized in the Table 1.

Table 1. k-¢ model fundamental equations.

Equation (¢ ,I", Z)

Continuity equation (1,0,0)
Component W equation (W ,1/Re+v,,

om0 W) of au)
oz or 0z

Component U equation (U ,1/Re+v,,

o (W), 21U U
dr Oz or or or r
k equation (k ,1/Re+v, /o, ,rP, —rg)

& equation (¢,v, /(Reo,),rC,P.elk—rC,e* I k)

wherez=p+2k/3, v,=C,k*/e, C,=0.09,
C =144, C,=192,0,=1.0 and o, =1.3.

Equations are solved using structured grid (89x129 grid
points), staggered mesh and SIMPLE method. Equations
were discretized by using finite volumetric method, in the
convection terms QUICK scheme are used. Calculations
were performed for a submerged water jet with a Reynolds
number of approximately 13,000 based on nozzle diameter
(D=40.0 mm) and nozzle exit velocity (#,*=0.3 m/s). The
distance of the nozzle and the impingement wall was 234.0
mm. The nozzle plate has a radius of 400.0 mm and sidewall
is placed at a radius of 475.0 mm from the jet axis. These
conditions were the same as the flow turbulence statistics
measurements made by Nishino et al. (1996). See Fig. 1 for
the schematic view of the experimental apparatus. For the
inlet boundary conditions, a top-hat mean velocity profile is
adopted (W/W,*=1, U/W,*=0), while k/W,**=0.008 and the



eD/W,*=0.00015 are used. For the outlet boundary
conditions, 8¢/09z=0 (=W, U, k and ¢) is assumed. The
simulations are done on the half flow domain with symmetry
boundary conditions on the axis of the jet. The wall-function
relation is imposed on the solid wall.

Figure 2 shows the axial distribution of the calculated and
the measured axial and radial mean velocities of the fluid
flow at four radial locations »/D=0.125, 0.225, 0.625 and
0.875. The turbulence kinetic energy is also plotted here.
The calculated fluid velocities W, /Wy* and U, /Wy* are in
good agreement with those measured at these particular »/D.
Although not shown here, there is also good agreement for
the entire impinging jet flow region, except for the region
very near to the impingement wall.

0 (v), impingement wall

ZW) lf(u)

“ 'z* side wall
nozzle / X
plate nozzle

¢ 800
$950

Figure 1. Details of impinging jet flow geometry.
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PARTICLE EQUATION OF MOTION

Tchen extended the work of Basset, Boussinesq and Ossen
and proposed an equation for the motion of a rigid sphere in
a nonuniform flow (see Hinze, 1975). After rigorous
analysis, Maxey and Riley (1983) proposed an equation of
motion of a small sphere with relative motion of low
Reynolds number. Recently, Kim et al. (1998) proposed new
equations for the particle motion superior to the previous
equations and valid for Re,=2~150 and p, /p, =2~200.
Neglecting some terms and considering the drag force, the
added mass, the pressure terms and the gravity, the
Lagrangian equations that describe the movement of
particles in the cylindrical coordinate system are

&=M+&(ﬂ_ﬁ_f{u_p}

dt T 2p,\ Dt 1 dt
pD 217 2 P ©)
LA B/ T TS
P\ Dt 7, 7,
&=&;vp_>+_ef_(ﬁ+_w_&]
at T 2p,\ Dt r dt
)4 P 4 (10)

+& Dv/+ufvf _uY,
P, Dt r r

P P

oy Oy mwy) oy (Do dwy ) oy Dwy |y Pr
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Figure 2. Axial distributions of calculated and measured axial
mean velocity, radial mean velocity and turbulence kinetic
energy of the fluid flow.

d
=—LJ— f=1+0.15Re}®, Re,= ,

and u, =((u, -—u,,)2 +(v, —vp)2 +(w, —wp)z)”z.

Here, subscript p and f denote particle and fluid,
respectively. The terms representing centrifugal forces vpz/rp
and the conservation of angular momentum -u,v, /r,, appear
in the equations for u, and v,, respectively. Although the
time derivative (for example, in the axial direction) should
be represented by

ow, ow, v, Ow, ow,

L = + + + , 12
Dt o o o8 " ez (12)
the use of
dwfsa"w/+u ow, v, ﬁwf_‘_w o"w/ ’ (13)
dt ot P or  r 06 P oz

as proposed by Buevich (1966) is found to lead to more
satisfactory results of RMS velocities of particles. In
consequence, the following substitution is made on Egs.(9)-

(11):
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Duy jduy Dvy &y g D0 LAY gy
Dt dt Dt dt Dt dt

The local gradient of the mean fluid velocities is
determined from linear interpolation of the mean fluid
velocities obtained at neighboring grid points in the k-&
turbulence model calculation. Assuming isotropic conditions,
the fluctuating values of the time derivative and the local
velocity gradients are calculated from a Gaussian
probabilistic distribution with the following standard
deviations:

(OW ,18t),,, = (W] [15v)"2 (15)
(Ow'/82),,, = (&/15v)""* and (16)
(ow'lor),,, =(r'ow'186),, =(2e/15v)". (17)

The corresponding quantities in the radial and azimuthal
directions can be represented in the same way. The local
velocity gradients are first calculated in the Cartesian
coordinates and then transformed to the cylindrical
coordinates.

LAGRANGIAN
MODEL

Given initial conditions of velocity and position, the
motion of a single particle is calculated by allowing this
particle to interact successively with discrete eddies, each
eddy having a characteristic size, lifetime and RMS velocity.
At the start of a certain eddy-particle interaction, the particle
with initial velocity, u,, is located at the center of an eddy
with a characteristic velocity, u,. The eddy translates with
the instantaneous local fluid velocity, but the particle,
according to its equation of motion, will have another
trajectory, which is not coincident with the center of the
eddy. A new interaction starts when the eddy lifetime is over
or the particle crosses the eddy.

Based on Schuen et al. (1983), the following characteristic
scales were adopted:

7, =02k/e,L,=0.164k" /& and u, =2k/3.  (18)

EDDY-PARTICLE INTERACTION

Fluid velocity fluctuations are generated by
(u'f,v’/,w'f)=(uEN",ueNv,uer), (19)

where N,, N, and N, are random numbers generated from a
Gaussian probability density distribution with zero mean and
unity standard deviation. The generated fluctuations remain
constant during the particle-eddy interaction considered.
The time of interaction between particle and eddy is given

by

Ti = min(re,rc) > (20)
where the crossing time is estimated from

t.=L,/u,. 21)

Here, u, is evaluated at the start of interaction.
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EXPERIMENT

Motions of spherical glass particles (p,/p,=2.6) 1.05+0.15
mm in diameter released in a submerged impinging water jet
(Re=13,000) were measured to provide experimental data
comparable with the present simulation results. The details
of the experimental facility are found in the report by
Nishino et al. (1996) (see again Fig. 1). Particles mixed with
water in an auxiliary tank were introduced inside the nozzle
via a fine tube located at 55 mm upstream of the nozzle
mouth. The volumetric particle concentration in the auxiliary
tank was about 0.1 %. The particles suspended in the water
jet were issued vertically upward from the nozzle.

A pulsed light with HMFW duration of 18 ~25 ps
generated by a stroboscope was used to illuminate a 3-D
flow domain between the nozzle exit and the impingement
wall. Stereoscopic observation was made of the motions of
the particles by using two CCD cameras simultaneously. The
viewing angle between the cameras was 60 degrees. A frame
grabber which is PCl-interfaced with a host PC captured
analog TV frames in real time. Consecutive 120 frames
digitized at 60 fps were stored in a hard disk drive.

After experiment, digital image processing was applied to
determine the centroidal position of each particle image
recognized in digitized frames. The displacement of the
centroidal position was tracked to establish its 2-D trajectory.
Stereo-pair matching was finally done to reconstruct 3-D
trajectory. These procedures were basically the same as
those of Kato et al. (1995) except that only those trajectories
that were tracked successfully for more than 30 frames were
retained as data. More details of the experiment will be
reported elsewhere.

CALCULATION RESULTS

Figure 3(a) shows three-dimensional trajectories of 1.05
mm particles obtained experimentally. Note that the
impingement wall is placed at zZD=0 and the center of the
nozzle exit at z/D=5.85. Calculated trajectories for 15
particles released at z/D=5.0 and random radial locations
(r/D<5) are shown in Fig. 3(b). Particles travel upward in
relatively smooth lines until the region near the impingement
wall, follow the streamline curvature of the water flow and
then fall due to the effect of gravity. Trajectories in the top-
view plot show random zigzag movement in the radial
direction near the stagnation point. There is a qualitative
agreement between the calculation and the experiment.
Some particles in the experiment and also in the calculation
have arrived at and impinged onto the wall.

Figure 4 shows the axial distributions of the
dimensionless axial (a) and radial (b) mean velocities at
r/D=0.125, 0.225, 0.625 and 0.875. Here, comparison
between the calculation and the experiment is made for the
particle velocities (W, /W,* and U/W,*). For reference, the
calculated fluid velocities (W, /Wy* and U, /W,*) are shown
in dotted lines. The calculation for the axial mean velocities
of particles (see “W,/W,* (Calc., all terms)” in the figure) is
in relatively good agreement with those measured. Particles
are going upward with an axial mean velocity lower than the



fluid mean velocity because of the gravity effect. Also
shown in the figure as "W,/W,* (Calc., drag)" is the result
neglecting both the added mass term and the pressure term
in the particle equation of motion. This simplification
appears to have little influence on the prediction of the axial
mean velocities of particles. Note that similarly good
agreement between the calculation and the experiment is
shown in the radial mean velocity.

Figure 5 presents the axial distributions of the
dimensionless axial (a) and radial (b) RMS velocities at
various #/D. The inclusion of the added mass term and the
pressure term in the particle equation of motion is crucial to
predict well the axial RMS velocities of particles, as evident
from the comparison between the prediction neglecting those
terms and the experiment.. Fig.5 (b) shows that the RMS
values of radial particle velocity fluctuations are also
predicted reasonably in the present calculation.

The dimensionless mean product of the axial and radial
velocity fluctuations of particles is plotted in Fig.6. An
interesting feature recognized here is the lack of correlation
in the particle velocities (#’, and w’,) even though there is
strong correlation in the fluid velocities (', and w’,). The
lack of correlation seems to support the random-interaction
treatment made in the Lagrangian eddy-particle interaction
model. Present calculation is in good agreement with the
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Figure 3. Measured (a) and calculated (b) trajectories of 1.05
mm glass particles in impinging water jets (Re=13,000);
bird’s-eye plot and top-view plot.
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Figure 4. Experimental and calculated axial distributions of axial (a) and radial (b) mean velocities of particles and fluid.

e w o/ (Exp.)

(a) — m;'z/W* (Calc., drag)
2 0.3 /D=0 125 |—W m;p/w‘;* (Calc., all terms)
502 [ o Ly . . B o 4
'g 0.1 /'-A—» -
T o.3F r/b=0.225 ]
2 0.2 [ ]
= 0.1 brs T T 5 To—tee—ag ]
©
% o.3f r/D=0.625 g
o 0.2 B P R PR
3 01 ;L =
= b
3 03} t/D0.87% E
g 0.2 3
5 o_l%uon(,o,ooo"ooooo PR B—
a n/

0 1 2 3 4 5

z/D

o /W * (Exp.)
(b) —u’ i::"‘/w”* (Calc., drag)
2 0.2 —u’ ms'Z/Wz* (Calc., all terms)
T 0.1 eggorss —_— R
R =7
S /=0, 125
>
oozl ]
= 0.1 P e T —
E /D=0, 225 ]
£ o2 ]
s o
@ 0.1 N —
a b =
s ol ° ]
2 r/D=0. 625
2 0.2 J
5 0.1 Lo E
g o/ R
2 r/D=0; 875
1 2 3 4

z/D

Figure 5. Experimental and calculated axial distributions of axial (a) and radial (b) RMS velocities of particles and fluid.

1207



experiment, except for the region very close to the
impingement wall, where the prediction of turbulence of the
primary flow by the k-& model decreases its accuracy.

Figure 7 gives the radial dispersion of particles relative to
their mean trajectory. The radial dispersion is defined as the
mean-square of the radial distance between individual
particle location and ensemble-averaged particle location at
a certain time lag after particles have passed through a fixed
starting region in the flow field. Two starting regions,
(z/D,#/D)=(2.45~2.5,0.1~0.15) and (2.45~2.5,0.2~0.25)
are chosen here. It is shown that for a time lag less than 0.7 s,
the calculation is in good agreement with the measurement,
but in the long term, calculated dispersion starts to deviate
from the experiment. Note that there is a time where
dispersion becomes constant, indicating that particles have
reach the impingement wall region and have started to fall
under gravity effect.

* (U .w )/M** (Exp., Nishino et al.)

julll S ]
° W W)WM (Exp.)
— o o %0
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e —ap 0
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Figure 6. Experimental and calculated axial distributions of
mean stresses of particles and fluid.
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Figure 7. Dispersion of particles relative to their mean
trajectories starting from two particular locations.

CONCLUSIONS
The motions of glass particles (d,=1.05 mm, p,/p~2.6)
in a submerged vertical impinging water jet have been
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studied numerically using a Lagrangian one-way coupling
eddy-particle interaction model. The added mass and
pressure gradient terms are considered in the particle
equation of motion and modeled into the Lagrangian
simulation by assuming the isotropy of the velocity
derivatives. The simulated results are compared with the
experimental data obtained with a stereoscopic particle
tracking technique. It is shown that the particles travel in
relatively smooth lines until the region close to the
impingement wall where the particles start to behave in
highly turbulent manner. Simulated values of axial and radial
mean velocities of particles are in good agreement with
those of experiment. Also good agreement is obtained for
the fluctuating velocities of particles only when the and
added mass and pressure gradient terms are considered in the
simulation. The lack of correlation between axial and radial
velocity fluctuations of particles is experimentally pointed
out to support the hypothesis made in the Lagrangian
simulation.
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