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ABSTRACT

Many turbulent flows of practical interest involve solid
walls which introduce significant anisotropy into the flow
structure. This paper investigates the use of the Eddy
Interaction Model to predict the transport of heavy particles
in homogeneous shear flow. Most previous work with the
EIM has focused on isotropic turbulence. In this case, we
consider particle transport in a flow which involves a single
mean velocity gradient, and the associated anisotropy of the
Reynolds stress components. The EIM results are generally
in close agreement with the dispersion rates obtained in the
LES study of Yeh and Lei (1991). The particle fluctuating
velocity characteristics are similar to those obtained in the
DNS study of Taulbee et al. (1997) for the same strain rate.

INTRODUCTION

Particle transport is encountered in a wide range of
engineering flows in both industrial and environmental
applications. When the flow can be characterised as a
turbulent boundary layer, the flow structure is profoundly
affected by the presence of the wall. The mean and
fluctuating velocity fields of the fluid phase are highly
anisotropic, which then affects the particle transport.

A popular computational model for particle transport is
the so called Eddy Interaction Model (EIM). It represents a
Lagrangian approach which integrates the particle equation
of motion to determine the trajectories of an ensemble of
particles, which are then averaged to produce the statistics
describing the motion of the particle phase. The EIM
reconstructs the instantaneous flow field in terms of a
sequence of eddy motions in which and through which the
particle is convected. The instantaneous fluid velocity
fluctuation is modelled stochastically based on the
characteristic scales of the local turbulence field. In an
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engineering study, the turbulence characteristics would
most often be provided by a solution for the mean transport
equations in an Eulerian framework using some time-
average turbulence model closure.

Much of the development and assessment of EIM
performance has considered quasi-isotropic flow, such as
that created downstream of a mesh grid mounted in a wind
tunnel. In order to be useful for the wall-bounded flows
encountered in engineering practice, the performance of the
EIM in anisotropic flow needs to be evaluated. The
objective of the present study is to test the performance of a
specific EIM in predicting the transport of heavy particles
in homogeneous turbulent shear flow, where the mean
velocity gradient results in significant anisotropy among the
normal Reynolds stress components, and a non-zero shear
stress. Homogeneous shear flow has been widely
investigated using both experiments, e.g. Harris et al.
(1977) and Tavoularis and Corrsin (1981), and more
recently direct numerical simulation (DNS), e.g. Rogers and
Moin (1987). 1t is relatively well understood, and as such
is an appropriate test case. It resembles near-wall flow in
so far as it exhibits a mean velocity gradient and Reynolds
stress anisotropy. However, unlike near-wall turbulent
flow, the mean velocity gradient and associated anisotropy
of the turbulence do not change in the transverse direction.
As such, homogeneous shear flow captures some but not all
of the characteristics of a turbulent boundary layer. We
will use it as a first step for investigating the performance
of EIM in anisotropic turbulent flow.

To the authors’ knowledge no experimental data exists for
particle transport in homogeneous shear flow. In order to
evaluate the performance of the EIM, we will compare our
results to two sets of “particle experiments” which have
been performed numerically. The particle dispersion rates
predicted by the EIM will be compared to those obtained



by Yeh and Lei (1991) using a Large Eddy Simulation
(LES) to reproduce the instantaneous velocity field. The
fluctuating particle velocity characteristics will be
compared to those obtained by Taulbee et al. (1997) using
DNS to generate the flow field. The results obtained using
the EIM for particle transport in homogeneous shear flow
will also be contrasted with the results of previous studies
which considered homogeneous isotropic turbulence
(HIST).

EDDY INTERACTION MODELS

The eddy interaction model represents one type of
Lagrangian method developed for calculating particle
transport. As mentioned above, in the EIM the equation of
motion for the particle is integrated to determine the
particle trajectory. The particle statistics are then generated
by ensemble averaging a sufficiently large number of
particle trajectories. In the particle equation of motion, the
fluid forces depend on the instantaneous flow properties,
which for turbulent flow have some random or incoherent
component. In this sense, the EIM can be viewed as
implementing a random walk using a set of representative
eddies which are reconstructed from the flow field based on
the characteristic length and time scales of the local
turbulence field. One of the advantages of the EIM is that
it is computationally efficient, since the eddy properties are
assumed to be constant over the life-time of the eddy. This
partly accounts for the fact that it is the particle model used
by most CFD codes. A comprehensive description of
particle dispersion in gas flows including a discussion of
simulation methods is given in the review by Stock (1996).

In our study, we consider the transport of solid particles in
a Newtonian fluid, such as air or water. The particles are
assumed to be spherical in shape, and much heavier than
the fluid. Furthermore, we consider flows where the
particle loading is light, so that the particles do not interact
with each other, and any modification of the flow structure
(mean or turbulent) by the particles is negligible. We adopt
the specific form of the EIM developed by Graham and
coworkers, see Graham (1996a, 1996b) and Graham and
James (1996).

If we only include the viscous drag force and gravitational
body force on the particle, then the equation of motion
becomes:
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Herep andp,are the fluid and particle densities,
respectively, d,is the particle diameter, Cj, is the drag

coefficient and u, is the magnitude of the relative velocity

between the particle and fluid. The equation of motion for
the particle describes a nonlinear process in so far as the
local drag depends on the fluid velocity which is
determined by the trajectory of the particle. Following
Graham (1996a), if we assume the local fluid velocity to be
uniform, then the particle equation of motion can integrated
to obtain analytical expressions for the particle velocity and
location at the next time step:
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The equations above are used in the EIM to calculate the
trajectory of a particle through a reconstruction of the fluid
velocity field in the following manner. The instantaneous
fluid velocity field is decomposed into a mean and a
fluctuating component. The fluctuating component along
the particle trajectory is represented by a sequence of
eddies, each characterised by a single length, velocity and
time scale. The scales are chosen so that the eddies
represent the most energetic eddies, since these will have
the greatest effect on the particle motion. The velocity
scale is selected randomly from a Gaussian distribution
with its mean and variance based on the statistical
measures of the local turbulence field, so that the eddy
reconstruction represents a stochastic process. Within each
eddy, for the lifetime of the eddy, the velocity field is
uniform and equal to the sum of the mean and fluctuating
components.

At the start of a typical integration step, the particle is
imagined to be located at the center of an eddy. Over time,
the fluid point representing the center of the eddy and the
particle are convected forward along two distinct and
different trajectories. The association of the particle with a
given eddy will cease when one of two events occurs: 1) the
eddy lifetime has expired, or 2) the particle trajectory has
taken the particle outside the physical domain of the current
eddy. Thus, the fluid particle interaction time is set equal
to the minimum of the eddy lifetime and the eddy crossing

time. If L, is the eddy length and the effect of gravity is

negligible, then the crossing time can be calculated as
follows based on the expression for the particle velocity
given above:
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t,=—17, log, (1- (L, 14,7,)) )

To maximise computational efficiency, the integration time
step would be set equal to the fluid particle interaction
time.

In order to obtain agreement with experimental and
simulation data, careful attention is given to determining
the various time and length scales used by the model. In
summarising the specific model formulation adopted by
Graham (1996a) below, we will discuss the major features
in the context of the particle dispersion characteristics they
seek to reproduce.  Since practical applications are
ultimately interested in the transport of large groups of
particles, it is natural to use dispersion rates to describe this
behaviour. The first effect to be considered is the crossing
trajectories effect, which is used to describe the observation
that the presence of a drift velocity causes the particle
dispersion to be reduced. This behaviour is often
explaining by noting that the drift velocity causes the
particles to move more quickly through the turbulent
eddies, so that they are less effective at collectively
dispersing the particles. The crossing trajectories effect is
achieved by correctly specifying the fluid particle
interaction time, which relates to the choice of eddy time
and length scales. Graham and James (1996) indicate that
in order to ensure the correct long-time dispersion of fluid
and heavy particles settling under gravity, the eddy length
scale is specified as twice the Eulerian longitudinal length
scale and the eddy time scale as twice the Lagrangian
integral time scale. For flows with gravity, it may be
necessary to include the effect of gravity on the eddy
crossing time.

The second effect, known as the inertia effect, refers to the
fact that when gravity can be neglected, heavy particles are
observed to disperse more rapidly than fluid particles.
Graham (1996b) indicates that this effect can be achieved
by allowing the fluid particle interaction time to be greater
than the eddy lifetime, depending on the local turbulence
structure.

The third effect is the continuity effect, which describes
the fact that in HIST, the longitudinal dispersion coefficient
for heavy particles is expected to be twice that in the lateral
direction.  This is explained by differences in the
longitudinal and lateral spatial autocorrelation functions
due to the constraint of continuity. This effect is
implemented by using different interaction times in
different coordinate directions.

Complete details of the specific rationale for determining
the interaction times used in the EIM are given in Graham
(19962a). We have implemented his model and tested it to
verify that our code reproduces the important features of
HIST identified in his paper. We have also used it to
successfully predict the dispersion rates measured by
Snyder and Lumley (1977) for particle transport in grid
generated turbulence. Our model formulation and
dispersion results are documented in the thesis of Rashaida
(1998).
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HOMOGENEOUS SHEAR FLOW

As a test case for EIM applications intended for wall
bounded flows, we consider particle transport in
homogeneous shear flow. Homogeneous shear flow is a
simple turbulent flow characterised by a single non-zero
strain rate, in this case the shear component

S =dU, /dx, where U,is the streamwise velocity

component, and x, is the transverse coordinate direction.

Although the flow is described as homogeneous, in
experimental and DNS simulations there is typically
observed to be some streamwise evolution toward an
equilibrium state. In the final stages of evolution,
Tavoularis (1989) suggests that the anisotropy of the
Reynolds stress components and the Taylor microscale are
approximately constant. In regard to particle transport, it is
the presence of the mean transverse shear and the
associated anisotropy of the Reynolds stress components
that suggests the usefulness of this flow in capturing some
of the effects present in near-wall turbulent flows.

For the purpose of generating the Eulerian flow field, we
use a second-moment closure following Lee and Chung
(1995). The specific focus of their study was the
equilibrium state and associated stability/instability of the
model equations based on different pressure-strain
correlation’s.  For our purposes, the linear pressure-strain
model of Launder et al. (1975) is adequate to capture the
anisotropy of the flow. Using the formulation of Lee and
Chung (1995) for the special case of homogeneous shear
flow, the transport equations which govern the flow
development reduce to the following five ordinary
differential equations:
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where fy=-1, and the values of all other non-zero f;’s are
given in Table 1.

TABLE 1. MODEL COEFFICIENTS

Bi Value Bi Value
B1 2.00 B7 2.00

B -0.388 Bn 0.109
Bs 2.00 B2 -0.236
Bs 0.303 Bz -0.133

In the equations above, the anisotropy tensor is defined as

by =Suu; )/ k- (2/3)8; (1)

based on the Reynolds stress (uiu j). The turbulence

kinetic energy k is normalised by its initial value, k'=k/ ko
and the time ¢ is normalised by the reciprocal of the strain
rate S, (=St The equation for the (normalised)
turbulence time scale, Sk / €, is obtained by combining the
transport equations for k£ and €.

The model equations were integrated forward in time
(corresponding to streamwise displacement in the physical
facility) using a fourth order Runge-Kutta method to predict
the development of the Reynolds stress field for the flow
studied experimentally by Harris et al. (1977). Their wind
tunnel study considered a mean velocity of /2.4 m/sec and a
shear rate of S = 44 sec”’. (According to a corrigendum,
Harris et al. (1978), the actual shear rate was in fact
slightly larger, 48 sec’ ) The predicted values for the
components of the anisotropy tensor at the end of the test
section using a shear rate of S = 44 sec”’ are compared to
the values given by Harris et al. (1977) in Table 2. While
not in exact agreement, the predicted values are at least as
good as those obtained by the LES field simulated by Yeh
and Lei (1991).

TABLE 2. ANISOTROPY TENSOR

Component Predicted HGC
(1977)

b1 0.382 0.337

b2 -0.282 -0.268

bss -0.100 -0.068

bia -0.290 -0.297

PARTICLE TRANSPORT IN SHEAR FLOW

Dispersion Rates
The EIM described above and previously tested in HIST

was used to simulate particle transport in a shear flow
similar to that studied by Harris et al. (1977). The
predictions for the dispersion rates are compared to those
obtained by Yeh and Lei (1991) using LES to generate the
instantaneous flow field. Their study considered air and
spherical solid particles of different sizes with a density of
pp = 2420 kg/m® which is typical of glass. The body force
was taken to act in a direction transverse to the mean flow,
ie g/ =g3 =0 and g =-9.8] m/sec’. The particle
equation of motion was the same as that given in equation
(1), with the viscous drag term expressed by the following
relation:

c 24
=, Re <1
D Re p
g (12)
24 0.687
Cp = (1+O.15Rep' ) 1<Re, <1000
Rep

Their dispersion calculations were based on ensembles of
2001 particles.

In our case, the EIM was implemented based on an
Eulerian prediction for the Reynolds stress components
using the equations described above. The calculated
dispersion rates were typically based on ensembles of 6000
particles, which was sufficient to obtain converged particle
statistics. ~ One of the differences between HIST and
homogeneous shear flow is the non-zero shear stress

correlation (uluz) which arises due to the mean shear.

Following the approach of Kennedy and Kollmann (1993),
we attempted to reconstruct the instantaneous velocity field
in a manner which preserved the correct shear correlation
between the streamwise and transverse velocity
components, #;” and u;’. First, the Reynolds stress tensor
was transformed into the principal axes system for which
all shear stress components are zero. Within this reference
frame, the “random” velocity fluctuation in each direction
was determined by sampling a Gaussian distribution with a
variance given by the normal Reynolds stress component.
Finally, the velocity fluctuations were transformed back
into the original coordinate frame, thus ensuring the correct
correlation between the components. The effect of this
procedure was found to be relatively small for the
dispersion times considered. For example, in the case of a
80 um particle, including the shear correlation reduced the
transverse dispersion rate by less than 4 percent. The effect
of including the shear stress was almost negligible except
very near the end of the test section. This result is in
agreement with the conclusions of Kennedy and Kollmann
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(1993) for the case of particle dispersion in a round
turbulent jet.

The discussion of the dispersion rates predicted for the
particles will first consider the case of zero drift velocity.
Excluding the influence of gravity enables us to investigate
the effect of the inertia of the particle on the dispersion
rates. In our case, by increasing the particle diameter, the
particle inertia (and Stokes) number is increased. Figure la
and 1b plot the dispersion rates in the streamwise and
transverse coordinate directions for a particle diameter of
57 um with zero drift velocity. In general, the agreement
between the EIM and LES results is quite good. The
anisotropy of the flow is observed to strongly influence the
dispersion rates, so that the dispersion in the streamwise
direction is much greater than that in the transverse
direction. Unlike the case of HIST, the dispersion rate is
observed to decrease as the particle size (and inertia)
increases. This effect is much more prominent for the
streamwise than the transverse direction. For d, = 57 um,
Yeh and Lei (1991) found the fluid point and particle
trajectory to be almost identical. They attributed the large
streamwise effect to the inability of particles with larger
inertia to follow the streamwise growth of turbulence
kinetic energy in the shear flow.

Figure 2 illustrates the effect of a finite drift velocity on
the transverse dispersion rate for the same size particle.
Consistent with the crossing trajectories effect in HIST, the
presence of a drift velocity is to reduce the dispersion rate.
In this case the effect is larger for transverse than for the
streamwise direction (not shown), possibly due to the fact
that the streamwise component is more strongly affected by
the mean shear strain.

Particle Velocity Statistics

As a second test of the EIM, the predictions for the
particle velocity statistics in a shear flow are compared to
those obtained by Taulbee et al. (1997). They integrated
the particle equation of motion using the velocity field
generated by a DNS. The components of the anisotropy
tensor for the fluid and particle are compared in Table 3 for
the case of a 46 wm diameter particle with a relaxation time

of 7, =0016. Both the EIM and DNS results are

consistent in terms of comparisons between fluid and
particle properties. Part of the difference in magnitudes is
due to the different turbulence time scales of each
simulation. Both studies indicate that the streamwise
velocity fluctuation of the particle is greater than that of the
fluid, which is consistent with the theoretical results, e.g.
Liljegren (1993).

CONCLUSIONS

The EIM of Graham (1996a), primarily developed for
HIST, has been used to predict particle transport in
homogeneous shear flow. The dispersion rates and particle
statistics obtained using the EIM are generally in good
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agreement with the results of particle studies using LES
and DNS. The results do not appear to be especially
sensitive to the shear correlation, although this may become
more important for long-time dispersion rates. The results
suggest that the EIM can be implemented in flows with
significant flow anisotropy.

TABLE 3. PARTICLE STATISTICS

EIM Taulbee et al.
(1997)
Sk/e 12.2 4.82
b1 0.202 0.361
b2 -0.147 -0.291
b3 -0.142 -0.324
biP 0.640 0.630
basP -0.300 -0.417
bas® -0.290 -0.414
ulf/uif 1.18 1.02
ul/ud 0.37 0.739
ko / k 0.68 0.82
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Figure la. Streamwise dispersion rate for zero drift velocity, d,= 57um.
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Figure 2. Transverse dispersion rate for finite drift velocity, d,= 57um.
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