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ABSTRACT

The physical phenomena that determine the evolution and
characteristics of a scalar in a turbulent flow are studied using
direct numerical simulation (DNS) of both the scalar and the
velocity fields. The statistics of essential magnitudes related
to the mixing, such as the scalar diffusion, the scalar dissipa-
tion or the variance is analysed for the different small scale
dynamical structures in the flow. This study is conducted in
the framework of the Topological Methodology introduced by
Chong et al (1990), which classifies the different small scale
dynamics in terms of velocity gradient invariants. From this
investigation, the scalar properties display different features
for each of the four topologies considered.

INTRODUCTION

Scalar mixing in a turbulent flow is a complex process char-
acterized by a wide range of time and length scales, over
which a variety of physical mechanisms take place (Ottino,
1989; Dopazo, 1994). The scalar evolution, driven by the tur-
bulent velocity field, involves convection, random straining
and rotation, and molecular transport. Scalar heterogeneities
are smeared out by molecular diffusion enhanced by stretch-
ing and folding of isoscalar surfaces.

The rational formulation of stochastic molecular mixing
models crucially depends on the ability to parameterize the
scalar mixing mechanisms in terms of the scalar fluctuations,
the scalar gradient vector, and knowable information per-
taining both to the scalar and to the turbulence fields. It is,
thus, logical searching for some correlation of the molecular
transport terms in the conservation equations of the scalar re-
lated magnitudes and the properties of the velocity field. The
statistics of a passive scalar in turbulence has been widely
investigated in the past years using DNS (See, for example,
Kerr (1985), Ashurst et al (1987); Ruetsch and Maxey (1991)
or Pumir (1994), among others). The aim of the present work

is to investigate this statistics considering the different pat-
terns or motions that appear in the small scales of a turbulent
flow using the topological classification introduced by Chong
et al (1990). Specifically, regions in the flow with high kinetic
energy dissipation rates (dissipative motions) and regions of
high vorticity (focal motions) are of special interest here.

THEORETICAL BACKGROUND
For an inert scalar C' the mean value, < C >, is a con-
stant and the scalar fluctuations, ¢, obey the equation (Dopazo,
1994)
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where c is statistically homogeneous, D is the Fickian dif-
fusion coefficient of ¢ in the mixture and u is a zero-mean
statistically homogeneous solenoidal random velocity field.
The transport equation for the scalar gradient fluctuation c,;
is
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The dynamics of the scalar gradient is essential in the scalar
field evolution. This vector is perpendicular to the local
isoscalar surface, at each point in the flow; the geometry and
characteristics of these isosurfaces are determined by the spa-
tial distributions of the scalar gradient vector (Ottino, 1989).

Equation (1) can be alternatively rephrased as

= —C,j Uij + DV2C,i . (2)
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where €. = Dc ;c,; is the local/instantaneous scalar fluctu-

ation dissipation rate. Apart from the pressure term, the trans-

port equation for ¢? is analogous to that for the instantaneous

turbulent kinetic energy.
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Ensemble averaging (3) yields

2

ii% —2<e>. (4)

which is the equation for the scalar variance decay. The

transport equation for the scalar dissipation rate e. is also
readily derived, obtaining

Oe. 0
6—2 +uj ;9% = —2Dc;i ¢,j uji +
+DV2€c - 2D2c,,-j Cyij - (5)

The first term on the right hand side of Eq. (5) is the pro-
duction of €. by straining of scalar gradients; u;,; may be re-
placed by its symmetric part S;; and then this term is related
to that part of the strain aligned with the local and instanta-
neous scalar gradient vector, similarly to the production term
Sijwiw;j in the square-vorticity (enstrophy) equation. The last
two terms of (5) are the diffusive transport and dissipation of
€c, respectively.

An adequate tool to characterize the small scale patterns
or motions in a turbulent velocity field is the Topological
Methodology mentioned before. In this approach the turbu-
lent velocity field at each point is characterized by two quan-
tities: R and @, the second and third invariants of the velocity
gradient tensor A;; = Ou;/dz;. Their expressions for an
incompressible flow are

Q
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Four different non-degenerate topologies exist in an incom-
pressible flow: Stable focus with stretching (SF/S), unstable
focus with contraction (UF/C), unstable node/saddle/saddle
(UN/S/S) and stable node/saddle/saddle (SN/S/S). This clas-
sification, as given by Chong et al. (1990), is represented in
Figure 1. The null discriminant curve, also displayed, sepa-
rates focal, high vorticity, motions (above) from dissipative,
high strain, motions (below). Focal motions are characterized
by positive values of the second invariant, (), while dissipative
motions are associated with strong negative values of Q. Posi-
tive values of the third invariant, R, indicate two-dimensional
extension with contraction in the third dimension, while R
negative implies one-dimensional stretching with contraction
in a plane.

Analogous quantities can be defined for the strain rate ten-
sor, Si; = (Ai; + Aji)/2 and its skew-symmetric part,
Wij = (Aij — Aji)/2, the rate-of-rotation tensor. The non-
zero second and third invariants of these tensors are Rs, Qs
and Qw , defined as

1

Qs = =555 8)
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Rs = —ESi,-Sijk,- (9)
1

Qw = —EWijoi (10)
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Qs is always negative and is related to the kinetic energy
dissipation rate €, namely e = —4vQs. Qw is always posi-
tive and is directly related to the square of the vorticity vector,
often called enstrophy, by Qw = w?/4. The invariant Rs,
apart from indicating the strength of the strain, characterizes
its geometry: A positive Rs value implies two-dimensional
extension with contraction in the third dimension, and nega-
tive Rs indicates the contrary.

RESULTS

The main objective of this work is to explore the correla-
tions of the scalar molecular diffusion and the scalar dissipa-
tion with the velocity gradient invariants, in order to better
understand the scalar mixing processes, and the role that the
different velocity field coherent structures play in the scalar
evolution. This has been done by calculating conditional av-
erages for the four topologies described before, and obtaining
Joint Probability Density Functions (JPDF) of scalar-related
variables and velocity gradient invariants.

Data fields from 1282 DNS runs with an inert scalar have
been used to obtain the results presented in this work. From
this data all the variables of interest defined previously can be
calculated. The velocity field is forced and a Reynolds num-
ber Rey ~ 47 is reached. This low Re) has been taken delib-
erately to ensure a proper numerical resolution in the second
and third scalar derivatives. The initial scalar distribution is a
double Dirac delta, taking the region in the center of the cube
a scalar value C' = 1 and the rest C' = 0. The scalar mean is
0.5. The value of the Schmidt number, Sc, is 1.0. The results
presented here correspond to a time when the scalar pdf has
relaxed to a close-to-uniform distribution with two peaks near
to the extreme values, 0 and 1.

The statistical calculations have been done from a total
number of samples N=2,097,152 (= 1282 mesh points in our
simulation cube). The percentage of samples corresponding
to each topology is 39.8 % for SF/S, 27.6 % for UF/C, 25.5 %
for UN/S/S and 7.1 % for SN/S/S. While the scalar variance
calculated for each of the four topologies results in the same
value, the averaged scalar dissipation (0.1) in the UN/S/S sam-
ples is higher than the value obtained in SN/S/S (0.07), and
about twice the values obtained for any of SF/S or UF/C sam-
ples (0.06 and 0.05). Similar behavior is found for the scalar
diffusion rms.

Figure 2 displays < DV2c|c >, the conditional diffusion
of ¢, calculated for the different topologies detailed before.
The molecular mixing appears clearly enhanced in UN/S/S
regions and has a slightly weaker effect in the other topolog-
ical structures. A functional dependence of the conditional
diffusion on c can easily be proposed for each topology. Sim-
ilar trends are observed for the scalar dissipation in Figure 3.
< €. > reaches maximum values in UN/S/S structures, and
has lower values in UF/C topologies.

The probability density functions obtained for the quantity
¢yi C,j uj,; in the four topologies are shown in Figure 4. All
the curves are skewed towards negative values, which implies
that the scalar dissipation production term in Eq. 5 has a posi-
tive average. This feature is enhanced in the strain dominated



topologies and the distribution corresponding to the UN/S/S
topology presents a probability ten times higher respect to the
others of large negative values. This indicates higher probabil-
ity of strong scalar dissipation in strained regions, this effect
being more intense in the case of planar strained structures of
the flow.

The correlations of the scalar dissipation with —@s (i.e.
the strain) and with Qw (i.e. the vorticity) can be observed in
the joint pdfs depicted in Figures 5 and 6. The result for —Qs
shows that the largest values of the scalar dissipation occur
in the range of low and intermediate values of the kinetic en-
ergy dissipation (—Qs), being the probability of high values
of €. smaller as higher values of —Qs are considered. On
the other hand, the largest values of e. appear for the small-
est values of the enstrophy, as shown in Figure 6. The result
which would indicate that scalar dissipation has little inten-
sity in the core of high vorticity structures, generally filament
shaped, and reaches significant values in the strained regions
surrounding these vortex filaments.

Similar qualitative behavior is found for the joint statistics
of the scalar diffusion with the vorticity and the strain. Figure
7 shows the JPDF of the diffusion term DV2c in Eq. 1 and
—Q)s. The isocontours are symmetric, as expected, respect to
the —Qs axis with the largest absolute values of the diffusion
correlated with low and moderate strain magnitude. There is
low probability of points with high strain and high diffusion
values simultaneously. The JPDF of the scalar diffusion and
—Qs is represented in Fig. 8. In this picture, the maximum
absolute values of the diffusion are more probable to occur as-
sociated with minimum values of the vorticity, with the range
of probability width for the scalar diffusion values decreasing
uniformly as Qw increases.

CONCLUSIONS

The mixing intensity depends on the velocity gradient in-
variants R and @, i.e., on the character of the local motion
pattern at each point in the flow, being the UN/S/S topology
the one yielding the most efficient contribution to the scalar
dissipation and to the scalar diffusion. From the results pre-
sented in this work, both processes are well correlated with
low to moderate values of the strain and with minimum values
of the vorticity. This behavior, at first sight surprising, can be
physically interpreted: During the first stages of the scalar
evolution, the mixing takes place whitin strong strain regions
-associated with low vorticity values- with high efficiency.
After a small time, the variance has been critically reduced
and all the scalar is well mixed in those regions; therefore
the diffusion and dissipation vanish there, but the mixing is
still taking place in other regions with low to moderate strain
magnitude. As the JPDFs presented here have been calculated
after the initial scalar fields have relaxed, the significant corre-
lations are found for these regions of low and moderate strain.
Not a clear physical picture emerges from this description
and further work is required to analise these issues. In order
to complete the picture, more spatial information is desirable
concerning the scalar dynamics whitin the coherent structures
of the small scales such as the vorticity filaments, and the high
strain regions. A final objective of this future research will

be to parameterize the scalar mixing as a function of ¢, the
Schmidt number, and some of the invariants R, @), Qs and

Qw.
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Fig. 1: Topological classification.
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Fig. 2: Conditional scalar diffusion for the four topologies.
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Fig. 7: Joint pdf of the invariant -Qs and the scalar diffu-
sion.

Fig. 5: Joint pdf of the invariant -Qs and the scalar dissi-
pation.
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Fig. 8: Joint pdf of the invariant Qw and the scalar diffu-
sion.
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