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ABSTRACT

The paper reports on recent progress in the applica-
tion of Time-dependent Reynolds-averaged Navier-Sto-
kes (TRANS) approach to the analysis of the effect of
magnetic force and bottom wall configuration on the
reorganisation of large coherent structure in Rayleigh-
Bénard (R-B) convection. Based on ’triple decomposi-
tion’, the large scale periodic motion is fully resolved
in time and space, whereas the unresolved random mo-
tion is modelled using the conventional algebraic flux ex-
pressions closed with the low-Re-number k—e—6? three-
equation model. The applied method reproduced the
major features of the coherent structure, as well as the
long-term first and second moments in accord with the
available DNS results.

INTRODUCTION

In many turbulent flows of industrial relevance large-
scale coherent structures are the major carrier of mo-
mentum, heat and species. In such cases the transport
processes can best be controlled by affecting coherent
eddy structure, either by imposing an external force
(distributed control), or by control of boundary topol-
ogy or its physical conditions (surface heat and mass
transfer). Both techniques have long been in use: rota-
tion, buoyancy, electric or magnetic field, surface blow-
ing or suction, riblets and grooves, are only some of the
means applied to control drag, heat and mass transfer,
entrainment and mixing, combustion, noise. However,
it is only recently, with the advancement of experimen-
tal field techniques (e.g. PIV) and of Direct Numeri-
cal and Large Eddy Simulations (DNS, LES), that the
flow and turbulence control studies focus more on co-
herent structure. Major prerequisites for such an ap-
proach are the ability to identify organised structures
and a proper interpretation of their role in controlling
the flow and transport processes. While DNS and LES
methods can provide necessary information, their appli-
cation in complex industrial flows at higher Reynolds
numbers is still not feasible. On the other hand, the
conventional Reynolds-averaged Navier-Stokes (RANS)
approach, which is still used as a major industrial pre-
dictive tool, conceals by its virtue any spectral infor-
mation, and is regarded as unsuitable for detecting any

identifiable eddy structure.

In this paper we argue that for flows with a dominant
large eddy structure (vortex shedding, shear layers, lon-
gitudinal vortices, Rayleigh-Bénard convection), the ap-
plication of time-dependent RANS ("TRANS’) can be a
useful tool in identifying the organised motion and its
response to the imposed distributed or boundary con-
trol. The approach is akin to Very large Eddy Simu-
lation (VLES) by which the large structure is fully re-
solved, whereas the ’rest’ of turbulence is modelled by
conventional turbulence closure models (’subscale mo-
del’). As compared to LES, both contributions to the
long-term statistical averages are of equal order of mag-
nitude. Close to a solid wall, the unresolved (modelled)
part is more dominant, which imposes requirements to
model accurately the wall phenomena. On the other
hand, the resolved motion recovers the large scale trans-
port, which in conventional RANS is usually modelled
inadequately by gradient hypotheses.

In order to justify the TRANS approach we inves-
tigate several cases of steady Rayleigh-Bénard convec-
tion, in which large scale coherent structure is known
to exist, and for which DNS and experimental data are
available. Comparison of TRANS and DNS statistics,
which serves as a first check if the TRANS approach is
meaningful, requires a care in the interpretation of the
statistics in order to account for the contribution of the
resolved motion. The triple decomposition, by which the
instantaneous field is assumed to consist of long term av-
erage (time-mean), periodic (large-scale structure) and
random, provides a satisfactory tool, indicating that the
long-term statistics can be well reproduced by account-
ing for both the random and periodic contributions. A
second test of applicability of TRANS is the comparison
of structure identification functions evaluated in parallel
from DNS and TRANS realizations. Various identifica-
tion criteria have been applied including numerical visu-
alisation, critical point and vortex dynamics approaches.

EQUATIONS AND MODEL

The instantaneous motion of a conductive fluid un-
der the joint action of buoyancy and magnetic force is
described by the equations for momentum, energy and

1141



electric potential:

ou; 8 [ au; 18P N
W—a—mj( B2 UU) " pom TP9AT
) A A
+ U(fijkBlcaa—' + U Bi By — UiB}) (1)
Zj ,
FL
or 8 T s

V’¢=V.UxB (3)
where F is the Lorentz force, ® is the electric potential

and Bz is the imposed magnetic field.

Assuming that the large scale structure is distinctly
separated in the spectral space from the rest of turbu-
lence, we can decompose the instantaneous flow prop-
erty at a point <I’(:v:,7 t) into time-mean ®(z;), periodic
&(zs,t) and random é(zi, 1), i.e.

<i>(a:i, t) = B(x;) + é(zi,t) + ¢(zs, t).

By performing a long-term time averaging at a point
in space and assuming that because of a spectral gap
in between, the periodic and random motion are not
directly interacting, the second moments are obtained
as a sum of the resolved and modelled contributions, as
follows from the long-term averaging, i.e. for variables
® and ¥ :
3G - B = 39 + 30 @

Unlike in LES, both contributions are usually of the
same order of magnitude and close to a wall the unre-
solved part is often larger, as it is shown later in the case
of the turbulent heat flux and temperature variance.

In order to illustrate the implication of the approach
we consider the long-term averaged energy equation,
which for steady R-B convection reduces to:

0
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The first three terms are provided from TRANS and
the last term from the single-point model. Further av-
eraging over homogeneous (horizontal) planes yields the
expression for the total heat flux in vertical direction (z)

(6)

The contribution of the unresolved motion to the heat
flux —Bu; is modelled by a 'reduced’ algebraic flux/stress
model derived from the modelled differential transport
equation for fu; by assuming weak equilibrium, but re-
taining all major flux production terms:
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whereff =jxB= %(-V(pe +uxB)xB (8)

e

is the fluctuating Lorentz force and e is the fluctuating
electric field. Note that bold symbols denote vectors,
and B stands for B = B, assumed independent of (or
slowly varying with)time.

The turbulent stress tensor w;u; and the correlations
involving the electric field T;€; and fe; can also be ex-
pressed in similar algebraic forms by truncation of the
full transport equations. However, in the present work
we use simple eddy diffusivity expressions for these mo-
ments and account for the buoyancy and magnetic field
by additional terms in the transport equations for the
turbulence kinetic energy k and its dissipation rate ¢,
Kenjeres and Hanjali¢ (1999).
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with C,=0.025. Other terms in the £ and € equations
are modelled in the conventional manner. These two
equations, together with the equations for temperature
variance 62 (all modified for low-Re-number and near-
wall effects), close the problem, resulting in a three-
equation model k—e—02.

The equation set is solved numerically using a finite
volume Navier-Stokes solver for three-dimensional flows
in structured non-orthogonal geometries, with Cartesian
vector and tensor components and collocated variable
arrangement. The second order accurate central differ-
ence scheme (CDS) was applied for discretisation of dif-
fusive terms and second order linear-upwind or central
scheme (LUDS/CDS) for convective terms. The time
marching is performed by fully implicit second order
three-time-level method which allows larger time steps
to be used, in view of the fact that only large scales
are being resolved. Typical computations covered about
200-400 nondimensional time units 7*=7/BgATH/H
which correspond roughly to 15-30 convective time scales
based on convective velocity and characteristic cell cir-
cumference, Kerr (1996).

RESULTS AND DISCUSSION

The TRANS computations of Rayleigh-Bénard con-
vection over a heated flat bottom wall at a range of
Rayleigh numbers by Kenjeres and Hanjali¢ (1998) re-
produced very well the mean temperature, wall heat
transfer and the second moments obtained by experi-
ments and DNS. An illustration of TRANS performance
is given in Fig. 1a, which shows the near-wall blow up of
the predicted long-term averaged temperature profiles
for three values of Ra number, 6.5x10% 107 and 10°.



The results for the two lower Ra numbers are in excel-
lent agreement with available DNS. Moreover, the par-
allel application of several structure identification meth-
ods (second invariant of the velocity gradient, discrim-
inant of its characteristic equation, kinematic vorticity
number, massless particle trajectories) to the instanta-
neous fields obtained by DNS and TRANS showed a
striking resemblance in the large structure, including
the spiralling updrafts as major constituents of the large
scale unsteady roll-cell pattern, Cortese and Balachan-
dar (1993). These findings ensured a confidence in the
TRANS approach and its extrapolation to cases with
multiple body forces and complex wall topology, which
are both expected to impose a reorganisation and mod-
ification of the large coherent structure. Because this
structure provides major ’communication’ between the
boundary layers at the bottom and top walls, its modi-
fication is expected to influence the overall heat transfer.

R-B convection subjected to Lorentz force. The first
case considered is an example of distributed turbulence
control: a magnetic field imposed on the flow of con-
ductive fluid generates the Lorentz force, which damps
the velocity and its fluctuations in the direction of the
force, Mofiner and Miiller (1999). As a consequence, the
vortical structure is modified with a tendency to align
the major vortex axis with the direction of the magnetic
field vector. This effect is utilised currently in control-
ling the process of metal casting and is regarded as a
potential tool to control crystal growth. An algebraic
turbulence model has been developed which reproduces
well the effect of magnetic field on mean velocity and
turbulence stresses in forced turbulent flow in a plane
and a square channel, Kenjeres and Hanjalié¢ (1999).

In this paper we analyse a case of magnetic Rayleigh-
Bénard convection (RBM), i.e. the situation where the
gravitational vector and imposed magnetic field are ali-
gned. The considered Ra number, 107, ensures a fully
turbulent regime in the absence of magnetic field, en-
abling thus far the study of the effect of Lorentz force
on the reorientation of the vortical structure and the as-
sociated transport phenomena. We consider three cases
corresponding to zero, medium and a strong magnetic
field, defined by Hartman number Ha=0, 20 and 100.
Fig. 1b shows the influence of the strength of the im-
posed magnetic fields on the time evolution of Nu num-
ber (all starting with a uniform fluid temperature sub-
jected to a step temperature elevation of the bottom
wall). Obviously, the magnetic field significantly damps
the heat transfer. It is interesting to note that this
damping does not scale linearly with strength of im-
posed magnetic field. The long-time averaged vertical
temperature profiles for the three cases considered are
presented in Fig. 1c, showing a visible temperature in-
version at strong magnetic field, Ha=100.

Fig. 2a shows the effects of the imposed magnetic field
on planform structures (identified by the temperature
isosurfaces). Due to Lorentz force in x-y plane (since
the imposed magnetic field is oriented in vertical z di-
rection), the horizontal movement of thermal plumes is
significantly reduced. At the same time, the thermal

plumes are significantly smaller and more extended in
vertical direction. The coherent structures, identified
by the contours of constant kinematic vorticity number,
show a very similar behaviour, Fig. 3. With an increase
in Ha number, this structure becomes smaller, with a
higher concentration in the near wall regions, and a more
pronounced orientation in vertical direction.

Beside the direct effect on large-scale motion (Lorentz
force in momentum equations), it is recalled that the
additional ’magnetic’ terms representing the effects of
magnetic field are also present in the model equations for
turbulent kinetic energy and its dissipation rate, as well
as in the model expression for other second moments.
In order to illustrate the relative magnitude of the mod-
elled and resolved contributions to the second moments
- within the framework of TRANS approach, Fig. 2b.
shows both contributions to the turbulent heat flux and
temperature variance for three values of Ha number.
As seen, the modelled parts are the main contribution
in the near-wall regions (0<z/D<0.1, 0.9<z/D<1) for
the situation without magnetic field, i.e. Ha=0. When
the magnetic field is active, the ‘'magnetic terms’ in the
model of the unresolved motion become more important
and damp the modelled contribution relative to the re-
solved one. For Ha=20, both contributions are equally
important in the near-wall regions for both w@ and 62.
A further increase in magnet strength leads to a drastic
reduction in the modelled contribution, which becomes
negligible at Ha=100. It is interesting to note the peaks
of the temperature variance 6% for the largest value of
Ha are moved towards the cavity centre, which is a fea-
ture of low Ra numbers, indicating a low turbulence
intensity.

Effects of Wall Topology. As an example of bound-
ary controlled structure, we consider a high Ra num-
ber (up to Ra=10°) R-B convection over heated wavy
walls with different wave lengths and amplitudes. The
2D and 3D topologies are defined by sinusoidal surface
variation in one and two directions, Sp=0.1cos(z7), and
SB(z,y)=0.1cos(zm)cos(ym), respectively. Krettenauer
and Schumamn (1992) performed DNS and LES of the
same 2D configuration, though at a much lower Ra num-
ber of Ra=5.5x10* and observed that the gross feature
of the flow statistics, such as the profiles of turbulence
variance and fluxes were not very sensitive to the varia-
tions of the bottom wall topology. On the other hand,
the motion structure persisted considerably longer over
the wavy terrain than over flat surfaces.

Fig. 4a shows the influence of the bottom wall topol-
ogy on time evolution of integral Nusselt number for
four different wall configurations: a flat bottom sur-
face (confl), a 2D wavy surface in x-direction (conf2),
the same configuration with twice longer wave length
(conf3) and a 3D topology (conf4). The 3D wave con-
figuration promotes a fully developed regime earlier than
others. The longer wave length in 2D surface configu-
ration keeps the initial flow organisation for very long
period of time (almost 200 nondimensional time units).
When the fully developed stage was reached, the integral
Nusselt number approached the value for the flat wall,
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indicating that the imposed waviness of the bottom wall
affects the integral heat transfer in fully developed stage
only marginally.

Fig. 4b illustrates the effect of the ’subscale’ model
by comparing the 'pseudo DNS’ (no subscale model)
and TRANS. Both simulations show an almost identi-
cal time response in the development of the overall Nu
number, in a close correlation with the behaviour of the
maximum velocity components. The first peak is ob-
served when the U and W velocity components reach
their peak values for the first time (7*=15), followed
by a decline until the V velocity reaches its maximum,
followed by a subsequent increase in heat transfer. A rel-
atively coarse mesh of 822 x 32 resulted in a laminar-like
regime for the simulation without subscale model, and
the averaged value of the overall Nu was 12. Contrary to
this behaviour, the simulation with the ASM/AFM sub-
scale model was able to promote the higher heat transfer
yielding the final averaged value of Nu=18. According
to Krettenauer and Schumann (1992), the total heat
transfer in their simulations was just slightly affected
by the wall waviness. The above obtained value of the
Nu number confirmed the findings of Krettenauer and
Schumann (1992), and stresses the importance of the
subscale model in the range of low and transitional Ra
numbers for complex geometries, when the grid resolu-
tion is not sufficient to resolve all scales.

The effect of the bottom wall configuration on the
mean properties (W,T) and second moments (62) is pre-
sented in Fig. 5a and Fig. 5b. At the initial stage of
heating, 7*=50, the contours of vertical velocity and
temperature in the horizontal plane (x,y,0.5) show a reg-
ular flow pattern determined by the wall configuration,
Fig. 5a. Updrafts are represented by solid lines and
downdrafts by dashed line contours. The sites of the
plume generation are located at the surface wave peaks,
as observed by 5 plumes regularly extending in the ver-
tical direction. At 7*=200 the picture is significantly
different. The locations of the plume realization are not
fixed anymore, the two-dimensional structure orienta-
tion is lost, and the plume movement produces a strong
horizontal motion. The second moments (the modelled
part) show a similar behaviour: the contours of 82 in
the vertical planes indicate that 92 are concentrated in
the near-wall regions. This is what we expected, since
the main role of subscale model is to produce a correct
near-wall behaviour while in the outer region the large
scales are resolved.

A similar analysis is performed for the 3D surface
wave configuration. The plumes raise from the surface
peaks and sink into the surface valleys, portraying 25
characteristic locations in (x,y,0.5) plane, Fig. 5b. At
7*=200 the initial organisation of the flow cannot be
observed anymore. Thermal plumes occupy a signifi-
cantly larger space and not only the regions close to the
bottom surface peaks, as found in the initial phase of
flow development.

In order to get a better insight in the organisation and
modification of the large coherent structures, we applied
the structure identifying analysis to an instantaneous
TRANS realization. Fig. 6 shows the time evolution
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and spatial organisation of large structures defined and
identified by kinematic vorticity number, Ny. Very dif-
ferent shapes and organisations are observed in the ini-
tial stage of heating (7*=50) for two different topologies
of the bottom wall. The large two-dimensional struc-
tures extending in y-direction and located in the centre
of the cavity are observed for the imposed 2D topology.
Contrary to this, for 3D wave topology, the coherent
structures are located in the near wall regions and are
significantly smaller in size. At (7°=200), the struc-
tures are very similar in shape and size for both con-
figurations, but even for this time instant, significantly
different flow reorganisation can be observed (diagonally
oriented for 3D topology and around the central y-axis
for 2D wave topology). In both cases and at both time
instants, a close correlations between thermal plumes
and large structures can be observed.

CONCLUSIONS

The time-dependent Reynolds-averaged Navier-Stokes
(TRANS) approach was applied to analyse the effects
of the imposed Lorentz force and bottom wall waviness
on the reorganisation of the large coherent structure in
Rayleigh-Bénard convection at high Ra numbers. While
fully resolving the large-scale motion, the single-point
three-equation k —e — 602 algebraic stress/flux model was
used to compute the second-moments associated with
the unresolved (’subscale’) motion. The method was
earlier validated for classical R-B convection over flat
walls, showing very good agreement with DNS and ex-
perimental data. A major advantage of the method is in
resolving the dominant large-scale transport, dispensing
with a need to use gradient transport hypotheses. The
approach is regarded as potentially useful for both the
distributed and boundary control of turbulent flow, heat
and mass transfer through the control of large coherent
structure.

REFERENCES

Cortese, T. and Balachandar, S., 1993, Vortical nature
of thermal plumes in turbulent convection. Phys. Fluids,
A, Vol. 5, No. 12, pp. 3226-3232.

Kenjeres, S. and Hanjali¢, K., 1998, Transient analysis
of Rayleigh-Bénard Convection over flat and wavy walls
with a RANS model, Proc. Turbulent Heat Transfer 2,
Engineering Foundation Conference, May 31-June 5 1998,
Manchester, U.K.

Kenjereg, S. and Hanjali¢, K., 1999, Modelling the tur-
bulent flow subjected to magnetic field, Proc. 4th Int.
Symp. Engineering Turbulence Modelling and Measure-
ments W. Rodi and D. Laurence, eds., Elsevier (in press).

Kerr, M. R., 1996, Rayleigh number scaling in numerical
convection. J. Fluid Mech., Vol. 310, pp. 139-179.

Kretenauer, K. and Schumann, U., 1992, Numerical sim-
ulation of turbulent convection over wavy terrain. J. Fluid
Mech., Vol. 237, pp. 261-299.

MéBner and Miiller , 1999, A numerical investigation of
three-dimensional magnetoconvection in rectangular cavi-
ties, Int. J. Heat and Mass Transfer, Vol. 42, pp. 1111-
1121.



026 I 35 1.0
t HEY £ F
Q F “ \ é I RBM convection in a (8:8:1) cnvit%;Ra-l.E*-'l; Q E TRANS: Ra=1.E+7
N' £ DNS Groetzbach (1990)] 9 30 [ CONFIG: flat; spatial-CDS; time-3TI; TRANS N F ——— Ha=0
oz0 £ . ° ° Ra=3.81 Pl " overall Nusselt number at top wall E Ha=20
B I DNS Woern;:-(g994)6 HEY Has=! 8 F -- Ha=100
E oo o X i Ha=10 E
£ ONS Kerr Qo00eer L 8 e 2 Ha=100 2
|- TRANS: i \ E
0156 § ——— Ra=B.5E+5 \ E
F Ra=1.E+7 \ 20 E
E Ra=1.E+9 E
E i E
F 15 . E
o010 F & A 4 F
E h I 3
E CE ]
005 Fo i 2 F
2 s Z'\‘ / E
2 T T ° P o E Leveatvuinlaaly .
o k sl IRTITIITN
0 2 “ 8 8 1.0 0 50 100 150 200 250 300 0 B -2 -3 4+ 5 8 A 8 S 10
T Time

Figure 1: Influence of magnetic fields on time evolution of integral Nusselt number and long-time averaged temper-
ature profiles
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Figure 2: Effects of magnetic field on planform structures and resolved and modelled contributions of vertical heat
flux and temperature variance
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Figure 3: Influence of different magnetic fields on spat!}.“?eorganisation of large coherent structures defined by
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Figure 4: Influence of the bottom wall topology (left) and subscale model (right) on time evolution of integral
Nusselt number
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Figure 5: The effect of bottom wall configuration on first (W, T) and second order statistic (62), left- Sp=0.1cos(z),
right- Sp=0.1cos(zm)cos(ym)

Figure 6: Time evolution and spatial organisation of laree coherent structures defined and identified by Nx=2, first
column at 7*=50, second column at 7*=200, left- Sp =;1.1.4_63(z7r) , right- Sp=0.1cos(zm)cos(yr)



