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ABSTRACT

Experiments of the 3-dimensional turbulent wall jet
exhibit a rate of spread in the lateral direction signifi-
cantly higher than that normal to the wall. The present
contribution investigates the computed behaviour of the
self-similar form of the jet, employing different levels of
turbulence closure. It confirms that the rapid lateral
spreading arises from the generation of streamwise vor-
ticity, due to the anisotropy of the Reynolds stresses.
However, even the best performing of the models tested
overpredicts the spreading rate by some 50%. It is sug-
gested that, because of the strong coupling between the
axial and secondary flow, experiments require a sig-
nificantly larger downstream distance to reach a fully-
developed state than in the case of a 2-dimensional wall
jet.

INTRODUCTION

The present paper considers the flow obtained when
a turbulent jet is discharged along a smooth flat wall.
Such wall jets are found in ventilation, film cooling and
boundary-layer control applications, as well as being of
relevance to the exhaust from jet engines prior to air-
craft take-off.

Turbulent 3-dimensional wall jets have been studied
experimentally by, among others, Newman et al. (1972);
Davis and Winarto (1980); Fujisawa and Shirai (1989);
Matsuda et al. (1990); Abrahamsson et al. (1997). One
notable feature of the flow is that the jet exhibits a rate
of spread parallel to the wall some five to seven times
greater than that normal to the surface. The physical
reasons for this highly asymmetric spreading are not
fully understood though Newman et al. (1972) provided
evidence to suggest that it was due to the generation of
streamwise vorticity in the flow.

Some early calculations of the self-similar wall jet

were reported by Kebede (1982), employing a high-
Reynolds-number k-¢ model. Although current work
suggests that these earlier calculations were not entirely
grid independent, Craft and Launder (1999), it confirms
his finding that the linear k-e model does not predict
the large lateral spreading rate found experimentally.

The present work has adopted the same strategy as
Kebede (1982) in that the transport equations have
been transformed in order to allow the self-similar jet to
be computed as a 2-dimensional problem. This enables
one to avoid any concerns regarding numerical accuracy
that may be present in predicting the full 3-dimensional
shear flow. However, turbulence modelling, as well as
computing power, has advanced over the years since
Kebede’s work, and the flow has thus been computed
using both low and high-Reynolds-number stress trans-
port models as well as the simpler eddy viscosity based
k-e model, in order to shed further light on the physical
processes associated with the flow.

COMPUTATIONAL METHOD

Although the development of the wall jet would re-
quire the solution of a 3-dimensional problem, the
present work obtains a solution just for the fully-
developed jet via a 2-dimensional calculation. The
method employed is an extension of that described by
Kebede (1982), who predicted the flow using a high-
Reynolds-number k-e model with wall-functions and
applied the thin shear layer approximations. In the
present work, the method has been extended to include
the solution of the modelled Reynolds-stress trans-
port equations, including low-Reynolds-number mod-
els which resolve the near-wall sublayer. Calculations
have also been performed which include the terms nor-
mally discarded in the thin shear layer approximation.
However, the inclusion of these terms did not signifi-

1129



cantly affect the results and, for clarity, the equations
presented in this paper omit them.

Defining the coordinates ', y', 2" as in Fig. 1, where
2’ is in the streamwise direction, y’ the wall-normal
and z’ the lateral direction, similarity equations can be
derived by non-dimensionalising all quantities using a
reference length 4, and velocity W :

z; =x/8, Ui=Uj/W, wu; = u:u;/VV,2

e=¢'[(W;/br) P =(P' = PL)/(pW7)

p=u'[(Wrbr) (1)

With suitable definitions for 4, and W, the non-

dimensional dependent variables are functions of only

the cross-jet coordinates z and y. Applying these trans-

formations to the Reynolds averaged Navier-Stokes
equations then leads to the following:
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The modified convective velocities U* and V* are
U*=U-pWz V=V -BWy (5)
and the quantities o and 3 are defined as

o, dW, _ dé,
a= W, dz' A= dz' (6)

The continuity equation becomes

au*  ov*
+

o 29 +(a+28)W =0 (7)

The two parameters o and 8 can be related to each
other by considering the integral streamwise momen-
tum balance, which yields:

a+pB=-0/A (8)
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b
1]

[ [+ pasay ©)
1/2/u %Vyz

The value of 3, defining the streamwise coordinate
stretching, can arbitrarily be taken as unity, and « is
then updated each iteration of the solution process from
equation (8), using the computed values of A and o.

Similar transformations are applied to the transport
equations for the Reynolds stresses and e although, due
to space constraints, these are not shown.

The subsequent equations are solved using a suit-
ably modified version of the computer code STREAM
(Lien and Leschziner, 1994), which is a finite volume
solver employing a fully collocated grid arrangement. It
adopts the SIMPLE algorithm of Patankar and Spald-
ing (1972) (with Rhie and Chow (1983) interpolation
to avoid chequerboarding) to maintain continuity, and
the MUSCL scheme for convection (Van Leer, 1979).
Computations were performed on rectangular domains
with aspect ratios of up to 10 to accommodate the large
lateral growth of the jet. Grids of up to 120 (lateral)
x 80 (wall-normal) were employed, which ensured grid-
independent solutions.

dz (10)

y=0

q
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RESULTS AND DISCUSSION

The main purpose of the study has been to exam-
ine the physical mechanisms associated with the highly
asymmetric spreading of the turbulent 3-dimensional
wall jet. Consequently, computations have been made
with a variety of models, including an eddy-viscosity
scheme and several variants of Reynolds stress closure.

Table 1 shows the predicted spreading rates obtained
with the Launder-Sharma k-e model, which is seen to
return a much too low lateral spreading rate, and to
give a spreading rate ratio (dz,/2/dz)/(dy,/2/dz) only
slightly higher than that found in a laminar calculation.

Table 2 gives spreading rates predicted with 3 dif-
ferent Reynolds stress closures. Models 1 and 2 are
both high-Reynolds-number models used with wall-
functions, and differ only in the approximation made
for the pressure-strain ¢;;. Model 1 simply comprises
the widely used linear scheme:

¢ij = —Ci1€a:; — CZ(Pij - 1/3Pkk6ij) (11)

where a;; = @u;/k — %/36i; and the production rate
Pi; = —w;urdU; [0z — u;urdU; [0z, whilst Model 2
adds the wall-reflection correction proposed by Craft
and Launder (1992) to account for the presence of a
rigid wall:
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dyiyo/dz | deyjo/dz | &1/a/01/2
Expt. Abrahamsson et al. (1997) 0.065 0.32 4.94
Launder-Sharma prediction 0.079 0.069 0.88
Laminar calculation (at Re = 300) | 0.043 0.023 0.54

Table 1: Wall-jet spreading rate with a linear EVM and for a laminar jet.

dyiyo/dz | dzyya/dz | T1/9/91)2
Expt. Abrahamsson et al. (1997) 0.065 0.32 4.94
Model 1 0.081 0.079 0.97
Model 2 0.053 0.814 15.3
Model 3 0.060 0.51 8.54

Table 2: Wall-jet spreading rate with Reynolds stress closures.
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where [ is the turbulence lengthscale k*/2/e, n is the
unit vector normal to the wall, and y the distance to the
wall. Closure is completed by assuming local isotropy
and the generalized gradient diffusion hypothesis for
transport.

From Table 2 it can be seen that Model 1 gives
spreading rates only a little different from those ob-
tained with the k-¢ model. However, the inclusion of
equation (12) increases the spreading rate ratio by an
order of magnitude, giving a value three times as high
as the measurements of Abrahamsson et al. (1997).
Model 3, also shown in Table 2, is the two-component
limit (TCL) model developed at UMIST over the past
12 years, the particular form employed here being that
of Craft (1998). This is a low-Reynolds-number stress
model, which does not include additional wall-reflection
terms, but is designed to be compatible with the two-
component limit (Lumley, 1978) to which turbulence
reduces at a wall. This model again predicts a large
difference between lateral and wall-normal spreading
rates, although in this case the ratio is closer to, but
still significantly higher than, that found experimen-
tally.

The non-dimensional profiles of the streamwise ve-
locity, taken through the symmetry plane z = 0, (not
shown) show little difference between the 3 RSM’s.
However, the profiles taken along the horizontal plane
through the position of maximum velocity, plotted
against distance £/y;/, in Fig. 2, show a large varia-
tion, in accordance with the predicted spreading rates.
Figure 3 shows contours of the mean streamwise veloc-
ity computed with Model 3, compared to the exper-
iments of Newman et al. (1972). Although the com-
puted lateral width of the jet is clearly larger than in
the experiments, the qualitative shape of the contours
is encouragingly similar.

Davis and Winarto (1980) had suggested that the

large ratio of lateral to normal spreading rates was due
to asymmetric diffusion since turbulent velocity fluctu-
ations parallel to the wall were much higher than nor-
mal to this surface. To test this hypothesis, a further
calculation was performed, using the RSM of Model 2,
retaining the Reynolds stresses in the streamwise mo-
mentum equation, but representing them via the eddy-
viscosity formulation in the cross-stream U and V equa-
tions. This calculation led to a lateral spreading rate
only slightly higher than that returned by the k- model
(with a ratio £1/2/91/2 = 1), indicating that this is
not the mechanism controlling the highly asymmetric
spreading rates.

The predicted velocity field (with Model 3) in the
cross-stream plane, Fig. 4, shows that fluid is entrained
normal to the wall and deflected laterally. Profiles of
the lateral velocity in a horizontal plane through the
position of maximum streamwise velocity are shown in
Fig. 5, confirming that the higher values of U/W,, (as-
sociated with greater streamwise vorticity) are returned
by those models having larger lateral spreading rates.

To shed light on the coupling between the stream-
wise vorticity and the large lateral spreading rate, it is
instructive to consider the transport equation for the
vorticity €:

DR, ow ow ow
= =+ Qy—+ Q. —
D¢ oz + i dy + Oz
= 5, Puww  w
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PQ,  9°Q,
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From equation (13) it is clear that the vorticity could
be generated either by the anisotropy of the Reynolds
stresses (as it is in turbulent flow through straight non-
axisymmetric ducts) or by the stretching/bending of
vortex lines. However, this latter mechanism is not sig-
nificant in the fully-developed flow since the k- model
predictions fail to capture the high lateral spreading
rate of the 3-dimensional jet.
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Further confirmation of the role of the Reynolds
stresses in generating the streamwise vorticity comes
from a consideration of the predictions obtained with
Model 1. Without wall-reflection terms, this linear
model returns almost equal values for u2 and v? (since
the linear ¢;; of Eq. (11) redistributes the streamwise
normal stress equally into the other two components).
The term involving (v2 — u?) in Eq. (13) would thus
be expected to make a negligible contribution in these
predictions. From Table 2 it can be seen that Model 1
returns a very low lateral spreading rate. We may thus
conclude that, as in non-circular duct flows, it is the
anisotropy of the Reynolds stresses in Eq. (13) which
is primarily responsible for generating the streamwise
vorticity.

The above findings highlight the importance of this
flow as one that can clearly discriminate between differ-
ent models, and suggests that even the most elaborate
of those tested may need further refinement to improve
its performance. However, the computation scheme em-
ployed only returns the asymptotic self-preserving so-
lution. One thus needs to examine whether the ex-
perimental measurements have actually reached such a
state. It is known that in other shear flows, the cou-
pling between axial velocity and vorticity can lead to
very large development lengths being necessary before
a fully-developed state is attained (eg. Cheah et al.,
1993). There is also some evidence from parallel work
reported at this meeting on the corresponding case of
a 3-dimensional free-surface jet (Craft et al., 1999). In
this case, the development of the jet has been simu-
lated using a full 3-dimensional solver and it was found
that, although the predictions of Model 3 were in rea-
sonable agreement with the available measurements up
to around 40 diameters, the computed fully-developed
state had not been achieved at this point, but would ap-
pear to require a significantly longer development dis-
tance.

In the case of the wall jet, the most recent measure-
ments of Abrahamsson et al. (1997) extend to around
80 diameters, whilst the data of Fujisawa and Shirai
(1989), which do extend further, could be interpreted as
showing a continued downstream growth of the spread-
ing rate (though they were not reported in such terms
by the authors). A full 3-dimensional calculation of the
development over this distance would, of course, require
substantial computer resources. In an attempt to ad-
dress this question of how rapidly the jet develops, a
numerical solver has thus been set up which solves the
developing jet in a plane-by-plane manner, marching
downstream in a parabolic fashion. This allows one to
employ a solution domain which increases in size as the
solution progresses, ensuring that adequate resolution
of the flow is obtained at all stations.

Initial results of the developing jet have been obtained
employing Model 3 in its high-Reynolds-number form,
with wall-functions to account for the near-wall viscous-
affected region, and the predicted development of the
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lateral and wall-normal spreading rates are shown in
Fig. 6, together with the self-similar values returned
by the same model. The computations have so far ex-
tended to 75 jet diameters downstream at which point,
although the wall-normal spreading rate is close to its
asymptotic value, the lateral spreading rate can be seen
to be still growing. It is interesting to note also that
at this location the predicted ratio of lateral to wall-
normal spreading rates is around 5.4, in much closer
accord with the experimental measurements than is the
asymptotic value. The figure suggests that the pre-
dicted asymptotic state will not be reached until sig-
nificantly further downstream than experimental mea-
surements have been taken. Further calculations are
planned to confirm this.

CONCLUSIONS

This study of the self-similar 3-dimensional turbulent
wall jet has established that the exceptionally high rate
of spread parallel to the wall is due to the creation of
streamwise vorticity by the anisotropy of the Reynolds
stress field. While this is the same mechanism that
is responsible for secondary motions in straight, non-
axisymmetric ducts, the value of the peak secondary
velocities in the present case is an order of magnitude
larger than found in ducts.

While Reynolds stress closures should, in principle,
be able to reproduce the phenomenon, both models
considered here (Models 2 and 3) lead to appreciably
higher rates of spread than measured (Table 2). Nev-
ertheless, the TCL model is in much closer agreement
with the data of Abrahamsson et al. (1997) than the
Basic model, despite no near-wall correction being em-
ployed.

Finally, given that streamwise vorticity builds up only
slowly and is strongly coupled with the streamwise ve-
locity, we question whether any of the experimental
data have in fact achieved the asymptotic state. Sev-
eral pointers suggest that the fully developed state has,
indeed, not been reached, including the present prelim-
inary computations of developing flow.
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Figure 2: Profiles of mean streamwise veloc-
ity through the position of maximum veloc-
ity. Model 3; - - - Model 2; — — Model 1;
Symbols, experiments of Abrahamsson et al.
(1997).
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Figure 6: Predicted development of spreading rates in the wall-jet with Model 3.
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Figure 5: Profiles of mean lateral veloc-
ity through the position of maximum veloc-
ity. —— Model 3; - - - Model 2; - - Model 1;
Symbols, experiments of Abrahamsson et al.

(1997).
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