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ABSTRACT

The incompressible and anelastic Navier-Stokes equa-
tions are considered in the limit of rapid rotation (small
Ekman number). The analysis is limited to horizontal
scales small enough so that both horizontal and vertical
velocities are comparable, but the horizontal velocity com-
ponents are still in geostrophic balance. Asymptotic anal-
ysis leads to a pair of nonlinear equations for the vertical
velocity and vertical vorticity coupled by vertical stretch-
ing. Statistically stationary states are maintained against
viscous dissipation by thermal forcing. Direct numerical
simulation of the reduced equations reveals the presence of
intense vortical structures spanning the layer depth, in ex-
cellent agreement with recent experiments of Sakai (1997)
and simulations of the Boussinesq equations for rotating
convection by Julien, Legg, McWilliams & Werne (1996).
Exact but fully nonlinear steady and oscillatory solutions
of the reduced partial differential equations are found for
various two- and three-dimensional planforms.

INTRODUCTION

Rotation-dominated turbulent convection is present in
the oceans and atmosphere of the Earth, and in solar and
giant planetary interiors. With these applications in mind
the last few years have seen increased interest in the dy-
namics of rapidly rotating flows. However, flow charac-
terization via observations is both costly and challenging.
Laboratory experiments and numerical simulations there-
fore provide a valuable arena where rapidly rotating fluid
flows can be investigated and appropriate theories devel-
oped. In this regard, rapidly rotating flows are generally
believed to be simpler to understand because the strong
rotation reduces the effective dimensionality of the system.
The classical statement of this tendency is provided by the
Taylor-Proudman theorem which asserts that, under ap-
propriate conditions, rapid rotation confines any motion
to two-dimensional planes orthogonal to the rotation axis
(hereafter the z axis). Many flows in nature manifest this
property, e.g. the large-scale motions of the Earth’s atmo-

sphere, and giant planet features such as the Great Red
Spot of Jupiter. For these cases where horizontal scales
are (or are believed to be) much greater than the verti-
cal scales, reduced PDE descriptions of the Navier-Stokes
equation have been derived. These include the shallow
water, quasi-geostrophic, and balanced models (Pedlosky
1979, Gent and McWilliams 1983) and the recent 2+4e-
dimensional turbulence models of Babin et al. (1997) and
Majda & Embid (1997).

The presence of baroclinicity due to strong buoyancy
forcing and of viscosity violates the basic assumptions of
the Taylor-Proudman theorem, and generates flows paral-
lel to the rotation axis. Such flows typically occur on near
dissipative scales where the Taylor-Proudman constraint
is easily relaxed. Despite these complications, the Taylor-
Proudman theorem indicates that motion along the rota-
tion axis will be inhibited for sufficiently rapid rotation,
and suggests that the selected scales will be anisotropic,
with the horizontal scales much smaller that the vertical
scales. Indeed, recent visualization of laboratory convec-
tion by Sakai (1997) reveals the presence of tall Taylor-like
columns. Sakai notes, however, that in his experiments
the flow structure remains three-dimensional since the ve-
locity field is isotropic. In the following, we show that
despite this apparent three-dimensionality it is possible to
capture the dynamics of rapidly rotating convection with a
reduced set of partial differential equations. Like the 2+¢—
dimensional equations mentioned above, these equations
are derived using techniques that exploit the anisotropy
in the horizontal and vertical scales.

In the following we summarize the derivation of the
reduced PDEs for both incompressible and anelastic con-
vection.

INCOMPRESSIBLE CONVECTION

The dimensionless Boussinesq equations describing in-
compressible convection in a horizontal fluid layer of depth
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Figure 1: Results of direct numerical simulations of
three-dimensional Boussinesq convection in the rapidly

rotating regime (Julien et al. 1996). The visualization
of vortical structures in (a,c) is in terms of the quan-
tity X2 suggested by Jeong & Hussain (1995), where X2
is the intermediate eigenvalue of R2+S2%, where R and
S are, respectively, the rotation and strain matrices of
the velocity field. The fluctuation temperature field 6 is
shown in (b,d). Plots (a,b) are top views, (c) perspective,
and (d) sideview. The parameter values are Ra=1.0x107,
E=9.4x10"5, Ro=0.3, o=1; the aspect ratio is 2x2x1 with
periodic boundary conditions in the horizontal and stress-
free conditions on the top and bottom boundaries. The
simulation reveals the presence of slender coherent struc-
tures that span the depth of the layer. These structures
are noticeably thinner in the A, visualization than in the
temperature field.

d rotating uniformly about the vertical are

LDy gxu=—Vr+RaE? T2+EV?u, (1)
DL _pv1T, (2)
V-u=0, (3)

where u is the velocity field, T the temperature, and p the
pressure. The dimensionless parameters

— v
E—2Qd ’

ReSIE ooy (1)
are the Ekman, Rayleigh and Prandtl numbers, measuring
the importance of dissipation compared with the rotation
rate , the strength of the applied buoyancy force, and
the ratio of viscous and thermal diffusion times. The vari-
ables v and & are, respectively, the kinematic viscosity and
thermal diffusivity. Of the remaining symbols AT is the
temperature difference imposed across the layer while g
is the acceleration due to gravity and a the coefficient of
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thermal expansion.

In the following we assume that the rotation rate is
large in the sense that E<1. Although this requirement
says nothing about the local Rossby number Ro on the
scales of interest (Ro=U/2QL, where U and L are, respec-
tively, the characteristic horizontal velocity and length
scale), we will be focusing on scales L for which this num-
ber is small. However, in contrast to standard geophysical
applications in which the smallness of the Rossby number
is due to the large scales L considered, we shall be con-
sidering small scales with correspondingly slow velocities
U, and the Rossby number will be small because the rota-
tion rate is large. Recent flow visualizations in laboratory
experiments (see Fig. 5 of Sakai 1997) and numerical sim-
ulations (Julien et al. 1996) show that such a characteri-
zation is typical for turbulent rapidly rotating convection.
In these investigations, tall long-lived thermal and vor-
tical coherent structures are observed (Figure 1). These
structures, whose horizontal and vertical scales are close
to the dissipation scale and the layer depth, respectively,
cannot be captured by reduced prescriptions such as the
2-+e—dimensional models discussed above. A complemen-
tary approach is presented here.

STREAMFUNCTION FORMULATION
In the following we employ a streamfunction formulation
in order to avoid difficulties in imposing the incompress-
ibility requirement (3) on the velocity field at each order in
the asymptotic expansion. Additionally, we find that this
formulation provides greater clarity .in the interpretation

of low Ro convection. Specifically, we set
wi=(u,0,w)=V X $2+V X Vx9hZ. (5)
Here the streamfunctions are related to the vertical ve-
locity wE—Vi'l/J and the vertical vorticity ¢(=—V? ¢, re-
spectively. Horizontal mean flows @(z), 9(z) (if present)
require that the streamfunctions ¢, ¢ be non-periodic in
(z,y). However, in the expansion that follows such flows
only come in at higher order in E and hence are deter-
mined self-consistently by the leading order contributions
to ¢ and 9. Consequently, in the following we take both
¢ and v to be periodic in the horizontal and calculate the

associated mean flows only a posterior: as necessary (cf.
Julien & Knobloch 1997).

On taking z-Vx and 2-VxVx of the momentum equa-
tion, the governing equations take the form

16,V2 $-0.V2 Y+ 1Ny (p9)=EV2Vig,  (6)
10,V2V2 +0,V2 g+ Ny (¢,¥)=—RaE*V2 T
+EVVZy, (7)
&T+Nr(¢,,T)=EVT, (8)
where

Ny(pp) =

(w-V)w—(a-V),

2-VxVx(wxu),



Nr(pT) = uVT. (9)

The streamfunction representation of these terms can be
found in Julien et al. (1998). These equations are solved
for a fluid confined between impenetrable stress-free or
no-slip boundaries at fixed temperatures.

REDUCED INTERIOR EQUATIONS

Anisotropic coherent structures observed in rapidly ro-
tating convection (Sakai 1997, Julien et al. 1997, 1998) oc-
cur as an inevitable consequence of the Taylor-Proudman
constraint which suppresses variation in z relative to the
variation in (z,y). In the following we outline the deriva-
tion of a new class of reduced PDEs by exploiting this
anisotropy (see Julien et al. 1998). Specifically we focus

on horizontal scales of or<i1er E%d amil introduce “fast” hor-
izontal variables z'=E~ 3z, y'=E~ 3y, and use the nota-
tion D=8, to denote derivatives with respect to the “slow”
variable 2. We further introduce a slow time #=E3¢ and
scale the Rayleigh number according to Ra’=E3 Ra. In
thermal convection these are the dominant scales selected
by linear theory (Chandrasekhar 1961). In contrast to
the present scaling, the empirical scaling results reported
for the nonlinear regime (Boubnov & Golitsyn 1986, Sakai
1997) cannot be continued into the linear regime. To re-
tain nonlinearity in the dynamics we scale the stream-
functions according to ¢=E¢’, w:qup' . This rescaling
implies that on the length scales of interest the vertical
and horizontal velocities, given by

u=(0, ¢+ B3 0,0,0,~ 0o+ E38,0,0,—V3 ),  (10)

are of the same order, O(E%)Qd in dimensional units. The
local Rossby number is thus O(E%) and hence is small;
i.e., even though the scales of interest are small, the flow
is still rotation-dominated. Moreover, with this scaling the
horizontal velocity components are in geostrophic balance
at leading order. Note that the subdominant terms must
be retained to satisfy incompressibility. Hence, we may
interpret ¢ as a geostrophic field driven by the Taylor-
Proudman constraint, and ¢ as the convective field driven
by the buoyancy forcing. This description is consistent
with the low-Ro observations of Sakai (1997) who notes
that the velocity field remains isotropic despite the ap-
pearance of Taylor-like columns in the flow field. A fi-
nal step in the derivation requires splitting the temper-
ature T into its mean and fluctuating parts: T'(z,y,z,t)=
T(z)—{-E%;B(z,y,z,t). Here the overbar denotes a spatial av-
erage in the horizontal and a time-average. The time-
averaging is an essential aspect of our decomposition, and
allows us to close the problem (Julien and Knobloch 1998).

The following reduced system of equations is derived:

8, V2 p—J[$,V2 -0 DV2 p=0V4 g+O(EF) ,  (11)

atv’j«p—J[¢,Viw]+ﬂD¢=—"R“"+“Vi”’Jfo(E%) , (12)

i.e., a pair of equations for the vertical velocity w=-V2y

Figure 2: Visualization in X2 (a,c) and 6 (b,d) for the re-
duced equations (11-14) with Ra=20E~ %; the aspect ratio
is 653 x6E% x1 (not to scale). The flow characterization
captures the coherent structures first observed in simula-

tions of the full three-dimensional Boussinesq equations
(Figure 1).

and the vertical vorticity (=—V2 ¢, coupled via vertical
stretching and driven by thermal buoyancy:

(0:0-J[6,0)-V3 DT)=V2 60+0(E3) . (13)

Here J[f,9)=0. f8y9—8y f8z 9. The equations are closed us-
ing the first integral of the mean temperature equation:

DT=-1-(V2 90—V po)+0(EY) . (14)

Here the angular brackets denote a vertical average. The
resulting equations describe the dynamics in the bulk, out-
side of any Ekman boundary layers required by horizontal
boundaries. In the present problem such boundaries are
passive (Julien and Knobloch 1998).

NUMERICAL RESULTS

Equations (11-14) were solved numerically (Julien et
al. 1998) using a pseudo-spectral Petrov-Galerkin method
in which field variables are represented with sines or
cosines in the vertical and periodic Fourier modes in the
horizontal. Time-stepping is via a mixed implicit/explicit
3rd-order Runge-Kutta scheme developed by Spalart et
al. (1991), with the diffusion and forcing terms treated
implicitly and the nonlinear and stretching terms explic-
itly. We set Ra’=20 (2.2 times critical), o=1, and the
domain width to 6 times the most unstable linear wave-
length (A1 ~#4.8154) in both horizontal directions. Top and
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bottom boundary conditions are impenetrable/fixed tem-
perature and side boundaries are periodic. The calcula-
tions were conducted with 643 spectral modes and were
de-aliased in all spatial directions at each Runge-Kutta
sub-timestep.

Figures 2 and 3 show fully nonlinear numerical solu-
tions of equations (11)-(14) using only spatial averaging
for the mean terms. After a very short initial transient,
vortical buoyant plumes emerge and mutually advect one
another laterally. The plumes are columnar, spanning the
layer depth, as one expects given the Taylor-Proudman
constraint. However, we reiterate that the velocity field is
isotropic. These characteristics are remarkably similar to
those observed in experiments by Sakai (cf. Fig. 5 of Sakai
1997). Very near the boundaries, however, sharp temper-
ature gradients appear, as anticipated from the thermal
boundary conditions. Such boundary layers are evident
in T(z) in figure 3a for z<0.1 or z>0.9 where DT ap-
proaches —4.0; in comparison, at midlayer, DT is a factor
of 10 smaller (DT~—0.4). Semi-analytical investigations
by Julien & Knobloch (1997, 1998), summarized below,
indicate that this ratio continues to grow monotonically
with increased thermal forcing. These features also re-
semble closely those found in numerical solutions of the
full three-dimensional Boussinesq. convection equations at
large rotation rates (Julien et al. 1996 and Figure 1). Dif-
ferences between full Boussinesq simulations (Figure 1)
and the reduced equations presented here (Figure 2) are
most notable near the boundaries. This is to be expected
since the reduced system describes only the leading or-
der dynamics and so is insensitive to the details of the
mechanical boundary conditions. Such a system cannot
capture the structure of the resulting velocity boundary
layers. Finally, figure 3b shows the Nusselt number (or
nondimensional heat transfer) of the time-evolving flow,
and indicates that the flow develops rapidly to a near-
stationary state. These solutions are representative of the
possible dynamics contained within the new class of equa-
tions derived here. Moreover, in the low-Ro limit, integra-
tion over rotational timescales in this reduced prescription
provides an attractive advantage compared with integra-
tion over the diffusion timescales in the full Boussinesq
problem.

FULLY NONLINEAR ANALYTIC SOLUTIONS

Julien & Knobloch (1997, 1998) determine semi-
analytically fully nonlinear stationary and overstable so-
lutions to the reduced equations with certain planforms.
These solutions have the form

U=1[¥(Z)e“t h(z,y)+T* (Z)e h* ()], (15)

where ¥(Z)=(¢,¢,8) and h(z,y) is a planform function sat-
isfying (V2 +k2)h=0 with normalization h2=1. Here k
is the horizontal wavenumber 'of the planform. Admis-
sible h yielding fully nonlinear solutions are constrained
to satisfy 8;h8yh*—08zh*9yh=0. In this case the Jaco-
bians J(¢,V% ), J(¢,V2 ) and J(¢,0) all vanish. The
leading-order nonlinearity arises solely from the distortion
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Figure 3: The unaveraged Nusselt number Nu=—DT
from equation (14) as a function of dimensionless time
20t, showing rapid relaxation to a statistically stationary
state.

of the horizontally averaged temperature profile. Permissi-
ble steady solutions (w=0) include rolls, squares, hexagons
triangles, and patchwork quilt. Similarly, oscillatory solu-
tions (w#0) include travelling rolls and five standing-wave
patterns (rolls, squares, hexagons, triangles and patch-
work quilt).

Substitution of (15) into the reduced equations yields
the following nonlinear eigenvalue problem for the ampli-
tude ¥(Z), frequency w and (time-averaged) Nusselt num-
ber K:

(& 482 (k2 —iw)

2,0 p2(iw 4 1.2)2 2 -
D2p—k (a+k)zp+mk Ra K =0, (16)

1 2 14
K~! =/ s +If dz. (17
0 w?4 k14 SES|y)?

This problem is solved for a given Ra using a Newton-
Raphson-Kantorovich algorithm (Cash and Singhal 1984),
subject to the boundary conditions %(1)=v(0)=0. The fact
that equations (16, 17) are planform-independent implies
that all the permissible steady (or oscillatory) patterns
are degenerate in the sense that they have identical Nus-
selt numbers. In Figure 4a we show the resulting Nusselt-




Rayleigh-number plots for steady and overstable convec-
tion. In Figure 4b we show the mean temperature profiles
for increasing Rayleigh numbers, obtained from the rela-
tion

T w2 k4
DT= 1{[;71;Iiéxgﬂﬁg]l (18)

The formation of an isothermal interior bounded by thin
thermal boundary layers at the top and bottom is evi-
dent. This essentially exact theory is valid for all O(E~ %)
Rayleigh numbers and therefore describes highly super-
critical convection. The theory describes the thermal
boundary layers at these Rayleigh numbers but viscous
boundary layers are absent. Such thermal boundary lay-
ers must be resolved in simulations of the reduced PDEs,
as discussed further elsewhere.

Important conclusions can be made from the appar-
ent leading-order degeneracy in the above analytic solu-
tions for steady and overstable convection, Namely, in the
rapid-rotation limit the large amplitude state is charac-
terized by a competition between a number of computable
nearly degenerate states. Because of this near-degeneracy
such competition must occur on a slow time scale. More-
over the strong influence of the Taylor-Proudman con-
straint implies that any instabilities lead to states that
do not deviate substantially from the computable states.
Consequently we expect the statistical properties of the
resulting “turbulent” state to be largely independent of
which of the competing states is actually present, although
distinction between steady, and traveling or standing pat-
terns is necessary. We find good quantitative agreement
between4the Nusselt number obtained in the simulations
at RaE3=20 and that computed from (17). Studies of
two-dimensional fully nonlinear convection on an f-plane
also support this picture and yield semi-analytical correla-
tions that are in good quantitative agreement with direct
numerical simulations in three dimensions (Hathaway and
Somerville 1983).

ANELASTIC CONVECTION

The methods described above for incompressible convec-
tion can be extended to include the effects of background
stratification. This effect is important for astrophysical
applications and is also of interest since the up-down sym-
metry of the Boussinesq approximation is broken. We
eliminate sound waves using the anelastic approximation
(Gough 1969), focusing on dynamics on timescales long
compared with the sound-travel time. The approximation
requires that the basic state be adiabatic and hydrostatic.
The equations describing this state, nondimensionalized
with respect to temperature T, density ps and pressure
ps at z=0, are

So=const., po=poTo, (19)
B=i(E)eo, g (Ko@) g)=0, (20
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Figure 4: a) Time-averaged Nusselt number K as func-
tions of the (scaled) Rayleigh number and b) Mean tem-
perature profiles at various Rayleigh numbers for steady
(dashed) and oscillatory (solid) convection.

where So is the entropy per unit mass, y=cp/cy is the ratio
of specific heats at constant pressure and volume, h is the
temperature scale height and Ko(z) is the (possibly depth-
dependent) thermal conductivity. If Ko=1 the background
atmosphere is found to be a polytrope with

To=(1-%), po=(1-7)", po=(1-%)""",  (21)
where m=1/(y—1) is the polytropic index and h=c,Ts/g.

In such a stratified atmosphere convection arises as a
result of buoyancy forces due to density perturbations p;
of the basic state po(z) assumed small compared to po
but still large enough to drive convection. Such buoyancy
forces can be calculated using the linearized equation of
state

(%) %:ﬁm(@%ﬂ%) , (22)

and the thermodynamic relation

=h__1.p
SI—TO ocRah pg (23)

valid for p1 <ps, p1<ps, T1<Ts. Here G=(p1s/ps)(Ts/T1s)
is a nondimensional ratio of the relative density and tem-
perature fluctuations, the subscripts 0,1 denote the basic
state and the perturbation about it, and the subscript s
denotes reference values. Note that this linearization is
valid even for nonlinear convection.

Since the characteristic magnitude of the quantity 7y
is determined by the temperature difference AT imposed
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across a layer of depth d we now express T} in units of Ty,=
AT and similarly for p; and p;. Under these conditions
equations (22, 23) become

T 4 T 4
Si=7-+O(E3), G 4+7l=0(E3) (24)

and the pressure perturbation p; therefore does not con-
tribute to the equation of state at leading order.

The anelastic equations describing these motions are

po 2% +2x pou=—Vp1 —oRaGE? p12+E0V T, (25)
poTo B3t =EV-(KoV)T1+ i 7 V-u, (26)

V-(pou)=0 . (27)

Here 7 denotes the viscous part of the stress tensor:
TijZuo(z)(ai’u,j—i—ajui—%v-u&j); where po is the (possibly
depth-dependent) coefficient of dynamic viscosity.

The reduced equations are now derived by introducing
the streamfunction representation

Pou=V X pF+V XV X3 , (28)

and using the anisotropic scalings suggested by the incom-
pressible case. The reduced anelastic equations that result
are

A [6,V2 ¢]~0DV2 p=0poV4 $+O(EF) , (29)

atvi¢—;15J[¢,vfi¢]+aD¢=—aRa %}MWOVH

+o(ET), (30)

poate-J[(;s,a]—To(Z)viw(Tl)zKoview(E%) .

To
(31)
Here Ra=cppsgATd?/puoKoTs. The equations are closed
using the first integral of the mean temperature equation:

D(KoDT1)=—D(V2 98)+V3 9D(In To)+4%7 . (32)

The last term represents the spatial average of viscous
heating. This is a lengthy function and is therefore not
presented here. The incompressible reduced equations are
recovered in the limit of large temperature scale height,
ie h>d.

CONCLUSION

In this paper we have shown that reduced PDEs for in-
compressible and anelastic convection in the low-Rossby-
number limit can be derived introducing scalings that ex-
ploit the anisotropy in the observed coherent structures.
The asymptotic theory is based on a relaxation of the
Taylor-Proudman constraint resulting from viscous and
baroclinic effects. We find that the horizontal velocity
is in geostrophic balance at leading order but the verti-
cal motions are strongly nonhydrostatic, resulting in an
isotropic velocity field. This situation is markedly different
from the shallow water, quasi-geostrophic and balanced
models where both geostrophic and hydrostatic balance
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holds on larger horizontal scales (Pedlosky, 1998; Gent
and McWilliams 1983). Remarkably, we find that the re-
duced PDEs have exact fully nonlinear solutions for a se-
lected class of horizontal planforms. This theory is likely
to be relevant to both laboratory experiments and nu-
merical simulations of the Navier-Stokes equation in the
rapidly rotating limit.
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