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ABSTRACT

The paper explores the computation of a turbulent liquid jet
discharged at the free surface of an expanse of the same fluid
at rest. The turbulent stress field has been modelled by
second-moment closure wherein transport equations are
solved for each of the Reynolds stresses. The model of the
pressure-strain correlation is especially influential on the
flow’s development. Two alternatives are explored: the
basic return-to-isotropy model with free-surface reflection
terms and the newer two-component-limit (TCL) model
developed at UMIST over the past decade.

The computations show that the TCL model is indeed much
more successful than the simpler alternative for this flow.
Experimental data are limited to the near-field but our
calculations suggest that to reach the asymptotic rates of
spread requires well over 100 discharge diameters of
development. The exceptional distance is due to the gradual
growth of streamwise vorticity driven by the strongly
anisotropic Reynolds stress field acting in the jet’s cross-
section.

1. INTRODUCTION

The three-dimensional surface jet, like the more extensively
studied three-dimensional wall jet, is a flow dominated in the
far field by the creation of appreciable streamwise vorticity
and the interaction of this vorticity source with the primary
flow. While, in principle, if the surroundings are at rest, the
flow should evolve to a self-similar form, the mutual
interaction between the primary shear and the secondary
flow means that a development length of well over 100
initial diameters is needed to reach the asymptotic state.

These assertions are based partly on indicators from our
companion study on wall jets (Craft & Launder, 1999) and
partly on numerical results obtained in the present research.
They could not, it is important to note, be inferred from
experimental measurements of surface jets since these

explorations have extended only some 40 initial diameters
from discharge, Rajaratnam & Humphries (1984), Anthony
& Willmarth (1992), at which point it was assumed that the
flow had reached, or was close to, the self-preserving state.

The question of the asymptotic character of surface jets is
of considerable environmental interest. For example, in
water-cooled power stations, it is important to be able to
provide an accurate assessment of the impact of the warm
water discharged into a lake or river, which implies knowing
or being able to compute mixing rates accurately.

The writers’ study on wall jets (Craft & Launder, 1999) has
mainly considered the self-similar behaviour. In the present
exploration, however, because experimental documentation
covers only the initial stages of development, we have
focused on the developing flow regime by way of a 3D
solver. The wall jet computations had compared eddy-
viscosity and second-moment computations but the former
were shown to be incapable of creating the substantial
streamwise vorticity that drives the flow. Accordingly, here
computations are limited to the case where the turbulent
stresses are approximated by second-moment closure. In the
present contribution attention is limited to the isothermal
case. The non-isothermal behaviour, including the important
influence of buoyancy will be considered in a future paper.

2. THE NUMERICAL MODEL

2.1 Numerical Aspects

The full Reynolds equations (rather than a boundary-layer
truncation) were solved in segments on an expanding mesh
as indicated in Fig 1 together with the corresponding stress
transport and dissipation equations noted in Section 2.2.
The STREAM-3D solver, developed and made available to
us in software form by Lien & Leschziner (1994), was
employed. This is a structured, non-orthogonal solver with a
collocated mesh. In the present application, the jet cross-
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section is mapped with a Cartesian grid while, in the stream
direction (x), the grid expands as needed in the vertical (y)
and horizontal (z) directions to cover the domain influencing
the jet development.

The weak effects of downstream events on the upstream
flow enabled us to tackle the flow development by
successively considering a small block of the flow domain,
starting at the point of discharge of the jet and applying zero
gradient conditions on the out-flowing fluid. When this
block had converged, one proceeded to Block 2 beginning
the computation well inside the downstream extent of Block
1 with entry conditions determined from the solution of the
first block. This “block marching” approach was repeated at
further downstream positions. For each block a 50
(streamwise) x 65 x 65 expanding mesh was adopted.
Entrainment to the domain on constant -y or -z surfaces is
required to be normal to the boundaries. Craft &
Launder (1999) have verified that this is a satisfactory
practice though it probably requires a larger solution domain
than if zero vorticity at the entrainment boundaries had been
prescribed. This latter practice was tried but unfortunately
did not lead to converged solutions.

2.2 The Turbulence Models Considered
As noted, only second-moment closures are considered
where transport equations are solved for the six Reynolds

stresses, u;u ; , and the energy dissipation rate, €.

The equations solved may thus be written symbolically as:
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In the above Py, ¢, &; and d;; are respectively the generative,
redistributive, dissipative and diffusive rates of w;u; . The

first of these is handled without approximation:
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The most crucial element to approximate for the present flow
is believed to be the non-dispersive fluctuating pressure
interaction, ¢; comprising mean strain and purely turbulence
effects. In the case of the Basic Model, ‘wall-reflection’
effects are applied to the free surface in accord with the
conclusions of Reece (1977) and McGuirk &
Papadimitriou (1985) that this practice led to clearly superior
predictions.  The particular ‘wall-reflection’ correction
employed is that proposed by Craft & Launder (1992) to
accommodate flow impinging on as well as parallel to a wall.
(Because of the strong vertical entrainment the present flow
has similarities to both these flow types.) Thus :
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where, in the interests of space, the wall-reflection
contribution is not detailed.

The second scheme is the Two-Component-Limit (TCL)
model developed at UMIST over the past dozen years from a
strategy proposed by Lumley (1978) The most relevant
feature is that, even for flow near walls, it employs no wall
reflection, Launder & Li (1994), Iacovides et al (1996). The
particular form used here is from Craft (1998) though,
because the present flow contains no viscous sublayer and
the motion is predominantly parallel to the surface, the
somewhat simpler version of Launder & Li with constant
coefficients would have given essentially the same results.

95 = Pyj1 *+ Py

, 1
¢ij1 =_C1£|:aij +C1 (aikajk _3A26U )]—A0‘5€a,~j

1
¢ijQ = —06[1::] —;60Pkk )"' 0.3€aij(Pkk /E)

uguj-ugu; (U, U,
—_—
k ox;  oxy

~02
_ g [_au, —3U,-J

P uiuk—aXI +ujuk3xl—
-G [Az (Pij — Dy )+ 3a,i3; Pyn = Dun )]

7 A 1
[E——42—J[PU _Eﬁijpkk )—0.05a,-ja,kP,d

1 1
+0.1€|:aij —E[aikakj _ga’JAZ ]](Pkkle)

uu Ujlm 2 . uu

k 3 k
+C) -

ukuj cUpU;
+0.2 2 Oy = Pie)

ukuj cUU; ]5 Ul Ul
3%
k2 3 k?

6Dy + 13k[3ﬂ+ WUy ]]

+0.1

X

Xk 29}

&)
In the above, the following standard notation is adopted :
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And the empirical coefficients are assigned as Craft (1998):
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Two distinct approximations are likewise made for ;. With
the Basic Model of ¢ , it is simply assumed that the flow
remains locally isotropic :

&) =268 ™

Although it is improbable that the dissipation precisely
maintains isotropy, this certainly gives a better estimate than
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the usual alternative £; = (which would imply zero

ij
dissipation of the vertical normal stress at the free surface).
With the more elaborate TCL model of ¢ij , we likewise

adopt a model for &; which satisfies the two-component limit
(Craft & Launder, 1996) :
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Equation (2) for the dissipation rate nominally takes the
same form for both models. The generalized gradient
diffusion hypothesis is adopted for both models:

7 k— Je
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while for the source and sink terms the usual representation
is retained:
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There is, however, a significant difference in the choice of
the empirical coefficients. The Basic Model adopts the
constant values:

cey=1.44 Cep =1.92 12)

The TCL model instead adopts:

;=100 cgy =1.92/(1+0.7A3-5A25) 13)

where A,s = max (A,0.25); A 51—2 (A4,-4;) (Lumley’s
(1978) “flatness” parameter); and Az=a;a jay; -
It perhaps needs to be underlined that the particular choice

of coefficients has been set several years ago by reference to
quite different flows to that considered here.

2.3 Boundary Conditions

Along the vertical symmetry plane, z = 0, the usual
symmetry plane boundary conditions are applied while, at
the outer edges, the secondary velocities were set to a zero
gradient. For stability, the turbulent quantities were set to a
zero gradient along the outer boundaries if there was mass
outflow, or set to zero if there was inflow.

The most influential conditions are those applied at inlet
and at the free surface. At inlet, the jet is assumed to have a
boundary layer of approximately 30% of the jet radius
(unfortunately, the experimental studies do not describe the
profile of the jet at inlet). At the free surface the mean
velocity gradient parallel to the free surface was set to zero
while the vertical velocity was itself zeroed.

Correspondingly, the surface shear-stresses and v were

assigned zero values while the vertical gradients of the other
two normal stresses were set to zero. The question of the
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most appropriate free-surface condition for £ is not entirely
resolved. Here, the value of € at the near-surface node is
prescribed from a length scale :

075,15
B Cy"k
E=—— (14)
K)V
with C,=0.09 , k=0.4187 , and y is the distance of the node
from the free surface.

3. PRESENTATION AND DISCUSSION OF RESULTS
The computed development of the surface jet is compared
with the experimental data of Rajaratnam &
Humphries (1984) in Figures 2 and 3; Figure 2 includes
computational results for the Basic Model, Figure 3 the
corresponding comparisons for the TCL model. These
figures show profiles of streamwise velocity on the
symmetry plane (z = 0) and on the horizontal plane passing
through the position of maximum velocity (for a given x).
From Figure 2 it is evident that the Basic Model fails very
seriously to provide an account of the jet development in
reasonable accord with experiment. There is a much too
rapid horizontal spreading leading to a decay of maximum
velocity that is much too fast despite the fact that the vertical
spreading rate is appreciably too low.

The corresponding development with the TCL model,
Figure 3, is in much closer agreement with experiment.
Nevertheless, one may note from Fig 3b that the velocity
decay rate is still somewhat too large (certainly for x/d
greater than 12) while beyond x/d = 7.4 the computed near-
surface velocity profile, Fig 3a, does not exhibit the dip in
velocity as the free surface is approached that is evident in
the experiments. This observed dip in velocity is evidently
due to convective transport of low momentum fluid from
below (i.e. from regions where y is large); that is, it is
associated with the computed secondary flow which, we
show below, is in turn driven by the anisotropy of the
Reynolds stresses in the cross-section of the jet (the y-z
plane). Now, the fact that the computed horizontal
spreading rate is somewhat too large implies a too large
secondary flow while - on the contrary - the absence of a dip
in the U(y) profile near the free surface suggests a secondary
flow that is too small! The explanation of this paradox is
perhaps that the boundary condition imposed on £ leads to a

seriously incorrect variation of view? very near the free

surface and thus to an underestimate of the vorticity source
giving a too low W velocity near the free surface.

The spreading behaviour of the surface jet is conveniently
summarised in Fig 4 which shows the progressive growth of
the half-widths with distance downstream. This figure
brings out the very clear superiority of the TCL model in
reproducing the actual growth pattern of the jet.

Although no measured values of secondary flow were
obtained, it is instructive to note the variation of the
maximum secondary velocities. It is found that the vertical
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velocity (V) remains roughly 5% of the axial velocity (U) for
both the Basic and TCL models. However, the lateral (W)
velocity (Fig 5) increases with distance downstream, and as
suggested by the previous figures, the Basic model produces
a much stronger lateral (W) velocity.

The build-up of the secondary velocity towards the free
surface from below and parallel to the free surface, away
from the symmetry plane, is indicative of the creation of
appreciable streamwise vorticity in the jet. It is of interest to
identify the source of this vorticity. The axial vorticity (£2, )
equation neglecting viscous terms may be written:

DBy o W 5 W, W
Dt ox 7 dy 0z
—
! ? 15)
. 92 [—z_v—z]+am_a2m (
dyoz a2 ¥’
c D
where 2, E[%—%), etc.

The variation of terms A - D over the cross section of the
wall jet at x/d = 20 is shown in contour form in Figs 6a-6c.
Two things are evident: firstly that the vortex line bending
terms (B) are less important than the axial stretching (or, in
this case, squashing) of vortex lines (terms A); secondly, that
both these mean field sources of vorticity are small
compared with that associated with spatial gradients of the
Reynolds stresses (C+D).

4. CONCLUSIONS
The following principal conclusions may be drawn from
this computational study of developing free-surface jets.

i) While experimental data of surface jets extend to 40
diameters downstream, this is by no means far enough to
reach full development. Indeed, our separate study of fully-
developed surface jets (Craft et al, 1999) indicates that the
asymptotic horizontal spread is some 60% greater than that
at 40d.

ii) The enhanced spreading is due to the strong streamwise
vorticity created by spatial variations in the anisotropy of the
Reynolds stress field over the jet cross section. Even at 20
diameters downstream, this source far outweighs that
associated with vortex line bending.

iii) A second-moment closure based on Lumley’s (1978)
two-component-limit provides a generally satisfactory
mimicking of the flow development even though the detailed
form of the closure has been fixed by earlier studies of quite
different flows.

iv) Certain anomalies in the predicted axial velocity close to
the free surface suggest that some reconsideration of the
appropriate surface boundary condition for £is needed.
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Figure 1. The solution domain involving overlapping
downstream blocks
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Figure 2. Streamwise Velocity Profiles computed with the
‘Basic’ Model. Data points from laboratory work of
Rajaratnam & Humpbhries (1984)
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Figure 3. Streamwise Velocity Profiles computed with the
‘TCL’ Model. Data points from laboratory work of
Rajaratnam & Humphries (1984)

1121




z (m)

5.000 0 000 0025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0 225 0.250

[N FETE FETEY FEREE FEWE FETE PSS FETRE R S |

4 0.00!

0.01

= 0.02/
g 0.03
003
0.006 3T T T T g oo
0.0 10.0 20. Ox/d 30.0 40.0 50.0 » 0.05¢
20,006 .06 Figures 6a-6¢ all plotted with a contour
- interval of 0.35s% at a downstream location
16.006] 73| of x/d=20. Grey contours represent negative

12.006] S Basic 0.08¢ source regions, Black contours represent

Q E regions of positive source.
ﬁs.ooﬁ: TCL 0.09
a 000'—3 %X x 0.1
0.000F T T T T T T T T T T T T T T T T T - . A .
0.0 100 200 30.0 400 s00 Figure 6a Vorticity budget — Term ‘A’ in equation 15
x/d
Figure 4. Vertical (top) and horizontal (lower) variations in z (m)
jet half—Width for ‘B.aSic’ and ‘TCL, moqels’ compared with 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
data of Rajaratnam & Humphries (1984) P T I T T TP I I D I |
0.01 L - -
i /
. O Vs /
/
éO.A 0.03¢ /
E = 0.04¢ ! /
DO.3 _ T Basic é //
e » /
302 . TCL 003 /
E e | //
— 0.0 \
30- 1 /_/’/‘/ Nes
_____ 0.07
0000 T T T [ T T T [ T T [ 1 T T T [ T T T 1]
0.0 10.0 20 Ox/d 30.0 40.0 50.0 0.08¢
0.09¢
Figure 5. Magnitude of lateral velocity with distance on

downstream for ‘Basic’ and “TCL’ models.
Figure 6b Vorticity budget — Term ‘B’ in equation 15
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