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ABSTRACT

Symmetry transformations are one of the most fun-
damental features of differential equations and illumi-
nate the axiomatic properties of classical mechanics.
Therefore we performed a symmetry analysis, also call-
ed Lie group analysis (Bluman and Kumei 1989) of the
Navier-Stokes equations in the high Reynolds number
limit for compressible turbulent low. The Navier-Stokes
equations for compressible flows admit different symme-
tries than the equations of incompressible flows. These
symmetries have to be taken into account for developing
models describing compressible turbulence.

An approach to derive turbulent scaling laws based
on symmetry analysis is presented in this paper. Start-
ing from the governing equations of compressible turbu-
lent flows we derived their symmetry properties. In the
case of isotropic turbulence four symmetry groups were
combined. Invariants were computed from the symme-
tries. These invariants constitute turbulent scaling laws
or similarity solutions of the governing equations. Scal-
ing laws were derived for the turbulent kinetic energy
in a compressible isotropic flow. These laws describe
the decay of turbulence. The analytical solution are
compared to results from Direct Numerical Simulation
(DNS).

INTRODUCTION

During the investigation of compressible turbulent
flows by means of DNS it was realized that a funda-
mental and comprehensive analysis is needed to account
for the compressibility effects of the flow. For isotropic
turbulence fluids exhibit a faster decay than for incom-
pressible fluids and additional correlations in the two
point correlation equation had to be expressed by an-
alytical methods and compared with DNS. Modelling
of the correlations needs a complete understanding of
the underlying physical properties of the Navier-Stokes
equations for compressible flow.

From the work in Oberlack (1997) on incompress-
ible turbulence it was noticed that symmetry transfor-
mations of the Navier-Stokes equations, to be explained
below, are one of the key features in order to derive and
understand turbulent ”scaling laws”. It is interesting
to note that the Navier-Stokes equation for compress-
ible flows possess different symmetry transformations
compared to incompressible flows. Therefore it is ex-
pected that different scaling laws can be derived. The
main difference to incompressible flows is that symme-
try transformations in the compressible domain depend
additionally on the form of the equation of state. In the
present approach emphasis will be put on modelling im-
plications of the symmetries and the turbulent scaling
laws. Any model has to admit exactly the same symme-
try properties than the governing unmodeled equations.
Since any failure to do so will lead to an unphysical
behaviour of the model, for example in an rotating or
moving frame of reference.

Symmetry transformations, sometimes simply cal-
led symmetries, are transformations which do not alter
the structure of the equation under investigation writ-
ten in the new coordinates. In classical mechanics differ-
ent types of symmetries are known, e.g. translation in
space and time, finite rotation and Galilean invariance
to be shown subsequently.

ANALYSIS

Scaling laws can be rigorously derived from sym-
metry transformation in incompressible turbulence as
was shown in Oberlack (1997). Here we report scaling
laws which are derived for the compressible turbulence
and discuss the results in comparison to DNS.

In order to clarify the analysis below the concept of
symmetry transformations, invariants and scaling laws
have to be introduced. These are general concepts which
can be applied for differential equations to derive ex-
act solutions. The following generic partial differential
equation (PDE) is taken as an example to illustrate the
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concepts.
F(y,z,2",2%,..) =0 1)

Here y and z represent the independent and the depen-
dent variables respectively and z(™ refers to all nth.
order derivatives of z with respect to y. A transforma-
tion

y=2e@y"2z") and z=¥(y",2") 2)

is called a symmetry transformation of equation (1) if
the following equivalence holds for this transformation

F(y,z, 2P,z )=0 3)
& F(y*,z',z*(l),z*(z),...) =0.

Hence the transformation (2) substituted into (1) does
not change the functional form of equation (1) if it is
written in the new variables y* and z". Once the sym-
metry transformation of a partial differential equation
are known one can use these to compute self-similar
solutions of the PDE.

These concepts are shown in the example of the
Euler equations for incompressible fluids

Ou; —0 (@)

oxi
Ou; Oui _ 19p (5)

Tl et =
ot tu Ox; pozx;’
where u; is the velocity vector, p is the density and p is
the pressure.
Among others, equations (4) and (5) admit the fol-
lowing symmetry transformation

t* =exp(az +a3)t , (6)
z; = exp(az)z; , (7)
u; = exp(—as)u; (8)
p" =exp(—203)p ; 9)

corresponding to the parameters az and as. It is ev-
ident that the latter transformations substituted into
the equations (4) and (5) preserve their functional form.

The crucial part of understanding similarity solu-
tions in general and the turbulent scaling laws in spe-
cific is the concept of invariant functions which will be
derived in the subsequent sections.

If the symmetry transformations of equation (1)
are known, then a function f(y,z) is called an invariant
under transformation (2) if the following condition is
met

.f(ysz) = f(y*,z*). (10)

For the given example of the Euler equations it is obvi-
ous that the terms
Z;

Ne; = —az (11)
taz+tas
W
Nu; = _?;T’ (12)
ta2+a3
—2a.
Mp = pteztas (13)
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are invariants under the transformation (6)-(9) since
they do not change their functional form written in the
transformed new variables, i.e.

*

T; x;
= (14)
ta2+a3 t ag+ag
Ui u;
__la_ = ,_i&_’ (15)
t a2+a3 t a2+tas
—2a, * —2ag
ptaatas = p*t azFes, (16)

The invariants 7.y (11)-(13) of the Euler equations are
used as similarity variables that enable the construc-
tion of a self-similar solution. If they are introduced
into the governing equations they lead to a reduction of
the number of independent variables. From the reduced
equations it is possible to construct scaling laws, which
depend on the arbitrary constants a2 and a3.

Each of these coefficients represent one symmetry
transformation, e.g. the classical symmetries like trans-
lation, rotation or galilean invariance. In the latter ex-
ample a2 and a3 correspond to two scaling symmetries.
Further they are needed to adjust for the initial and
boundary conditions of the problem. If there is an ex-
ternal scale in the problem, for example caused by a
boundary condition, then the variables describing the
flow cannot be scaled by the corresponding symme-
try transformation since the fixed boundary condition
would also be scaled to a new transformed one. Then
the arbitrary coefficient of that symmetry transforma-
tion can only be zero and the term ”breaking of symme-
try” is used. In (14)-(16) it can be seen that a rescaling
of the velocity is possible if also a proper scaling of time
is fulfilled. If there is an external velocity scale in the
problem wu; is fixed by u; = u]. Hence from (15) it fol-
lows that in this special case the arbitrary constant is
fixed to az = 0.

It is possible to investigate at single symmetries
seperatly. This was done in the case of the incompress-
ible Euler equations (4) and (5), where only two scaling
symmetries were taken into account. We can construct
the invariant solutions for more general cases either by
combining all the single symmetries of the governing
equations or by finding more complex symmetry trans-
formations.

These ideas will be adopted to the equations de-
scribing compressible turbulence and invariant solutions
of these equations are obtained by using the symme-
try transformations.The results will be compared to the
scaling law in incompressible turbulence.

Gas Dynamic Equations and its Symmetries

Compressible fluid motion is described by the Na-
vier-Stokes equations. Here we were interested in the
turbulent scaling laws of large Reynolds number in the
limit Re — oo for compressible flows. Hence we begin
with symmetry transformations (Ovsiannikov 1962) of



the Euler equations as shown below
O0p Op Oui _

-a-?+u,'a—xi+pawi— ) 17
T +ugias Lm0 ()
%+u¢§—£ +A(p,p)g:—: =0. (19)
A is specified by
A(p,p) = -pg—i % (20)

with the entropy S = S(p, p). Following Oberlack (1997
a) and making use of the group theoretical results there-
in we obtain the following symmetry transformations
for compressible turbulence depending on the functional
form of A.

If A(p,p) is arbitrary the equations (17)-(19) de-
scribing compressible flow contain the following sym-
metry properties:

e translation in time:

t" =t+a, ] = xi, (21)
uf =, P =p
pr=p
e translation in space:
t" = t, (l!: =i + as, (22)
ui=u', p=p,
P =p
e scaling of time and space:
t* = texp(az), z; = z; exp(az), (23)
uf =, P =p
pP=p
and two additional symmetries:
e Galileien

e rotation.

For specific functions of A(p,p) these symmetry
transformations are extended with additional subsets.
For a gas following the ideal gas law p = {5 two ad-
ditional symmetries are found. Here R is the gas con-
stant and T stands for the temperature. A from (20) is
A = vp, with v being the ratio of specific heats.

e scaling of time, velocity and density:

t* = texp(as), IHE (24)
uj = uiexp(—as), p'=p,
p" = pexp(2as),
e scaling of pressure and density:
t*=t, z; = i, (25)
up = ui, p* = pexp(as)

p" = pexp(as)

5

In the special case of an mono-atomic gas v = 3 we
obtain an additional nonlinear symmetry:
e projection symmetry:
* t * Zi
= e 26
1—ast’ T T T et (26)

uj = ui + aa(z; — uit), p* =p+ (1 —ast)"?

P =p+(1—ast)"
Where n = 3 stands for the number of dimensions.
Using the theory of approximate symmetries it was
observed that the projection symmetry is not broken for
small disturbances of y around its value of v = % This
fact is assumed to expand the theory to a wider range of
application even if non mono-atomic gas is considered.
The above symmetries and their combination can
be used to rescale the problem keeping the governing
equations unchanged. All the above transformations leave
the governing equations invariant. Also a combination
of all four constitutes a symmetry of (17)-(19). The or-
der of combination does not matter since the transfor-
mation can always be brought into an equivalent form
by manipulating the arbitrary constants. Scaling laws
that corresponds to these symmetry transformation will
be derived and shown in the following section.

Turbulent Scaling Laws

In this work we restricted ourselves to homoge-
neous isotropic turbulence. Therefore we skip the Gali-
leien symmetry due to the condition of homogeneity of
the flow which means that the ensemble averaged ve-
locity U; is not a function of space.

Ui # f(=i) (27)

where the averaging relation between the velocity wu;,
its fluctuation w; and the mean velocity U; is

wi = U; + ui. (28)

Due to the above assumptions of isotropy the rotation
symmetry is implied for the flow. Hence

w?=uw?=ul (29)
for the turbulent normal stresses. In the case of isotropic
turbulence U;=0 and hence u; = u;.

By combining the symmetry transformations from
the latter chapter and keeping in mind that Galilean
and rotational symmetries are implied in the velocity
field, we obtain the symmetry properties for compress-
ible turbulent flow, which are analysed in this chapter.
The translation in time (21), scaling of time and space
(23), scaling of pressure and density (25) and the pro-
jection symmetries (26) remain in the special case of
isotropic turbulence.

The functional form of the projection symmetry
(26) shows a spatial dependency of the velocity. If we
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only consider this symmetry transformation like men-
tioned above than we obtain the transformation sym-
metry for the instantaneous velocity

ui = ui(1 — ast) + aqz;. (30)
If we ensemble average over the latter equation we ob-
tain

U = Ui(1 — aat) + asz;. (31)
The difference of the equation (30) and (31) yields
o'} =u'i(1 — aat). (32)

Hence we have to conclude that the spatial coordinate
in the projection symmetry is not of importance for the
transformation properties of the fluctuating velocity.
We will combine the two scaling, translation in
time and projection symmetry transformations and do
obtain two scaling laws for the fluctuating velocity. These
laws do depend on the sign of a combination of the ar-
bitrary constants a;. This is caused by the nonlinear
term in the projection symmetry (26). We then define

A = 4daqa; — (a2 + a3)?, (33)

where the a;’s represent the listed symmetries above.

Using the combination of the symmetries (21), (23),
(24) and (26) we obtain the following symmetry trans-
formations for A > 0

1
e \/Ztan(ix/Z)+2a4t+a3+a2 VA et

VA - tan (%\/Z)(zm tas+ay) 204 204
(34)

a2 — 83 \/A — (2a4t + a3 + a2) tan(zz—z)
2

vA 1+tan(%\/Z)2

*
u = ue

and for A < 0 the combination of symmetry transfor-
mations gives

1
_ v/—Atanh (—-5\/—A) + 2a4tia3 + a2 J=A

t*
vV—A + tanh (—%\/—A)(2a4t + a3 +a2) 2a4
(35)
a3z + a2
T s (36)
a2 — a3 \/—A — (2a4t + a3 + a2) tanh (——_é)
v =ue 2 2

\/E\/ 1+ tanh(—%\/:ﬁ-)z

There are two invariant functions for the velocity
that remain unchanged under the symmetry transfor-
mation (34) and (36) in the new transformed coordi-
nates t* and u* as mentioned in the analysis section.
They are distinguished by the sign of A. For a positive

1100

sign of A we obtain

a2 —as 2a4t + a2 + a3
arctan

Y A
u = Cl ) (37)
Vast? + (a2 + as)t + a1
while in the case of A < 0 the decay of u follows the
law

az — a3
2a4t+a2—\/—A)2*m . (38)
2a4t + a2 + VA
1

u = Cz(

*
Vast? + (a2 + as)t + a1
or equivalent
az—az _, 2a4t+az2+a3
nh

t
. evV—A V=2
uw =Cs ) (39)
Vast? + (a2 + a3)t + ax
In both cases the result is a decay law for the tur-
bulent kinetic energy proportional to

k~t? (40)

in the limit of large Reynolds number and ¢t — oo.

If a4 is set to zero the transformation symmetries
reduce to the symmetries of the equations for incom-
pressible flows. Hence we obtain the well know result
for the decay of the velocity fluctuations in incompress-
ible turbulence

a2
u= C1[a1 + (a2 + aa)t] aztas | (41)

adopted in almost all turbulence models. Our interest
is now focused on the case a4 # 0.

In Figure (1) DNS results for the decay of the
turbulent kinetic energy of an incompressible and a
compressible flow at a turbulent Mach number M; =

3@ = 0.4 are shown, where ¢ is the mean speed
of sound. The compressible flow simulation exhibits a
faster decay than the incompressible one, which may
be induced by the same effects as the higher decay ex-
ponent in equation (37) and (38) versus the ”incom-
pressible” decay law (41). This comparison is only in a
qualitative way since our analysis is carried out in the
high Reynolds number range and the DNS was done for
a finite "low” Reynolds number.

The present approach can be expanded to take into
account a variable Mach number. All group parameters
in the corresponding scaling laws to (37) and (38) then
do depend on the Mach number. Hence compressibil-
ity effects of turbulence naturally come in due to the
rigorous symmetry analysis. Work will be continued on
asymptotic methods which give information about scal-
ing laws in special parameter regimes of Mach number,
and about the stability of these laws with regard to
disturbances in these dimensionless parameters.

The results outlined above have serious implica-
tion for turbulence models. Because of the outstanding
importance of symmetries for classical mechanics, pro-
posed one- and two-point closure models of turbulence




need to satisfy the symmetry properties of the under-
lying unclosed equations to maintain the ability of cap-
turing the proper flow physics. A wide variety of mod-
els for incompressible turbulence do not account for all
symmetries of the ”incompressible” Navier-Stokes equa-
tions, as has been shown by Oberlack (1999). However
a few models respect the "incompressible” symmetries.
Nevertheless it appears that simple extensions of ”in-
compressible models” may not allow for the additional
symmetries of compressible flows.

Therefore existing ”incompressible” models like the
k — € or the Smagorinsky model in Large Eddy Simula-
tion (LES) of turbulence may not be easily extendible
for compressible flows. New compressible models of Sar-
kar (1991) and Zeman (1991) take into account addi-
tional dissipation and dilatation due to compressibility
effects. See Blaisdell (1993) for a discussion on these
models. Their calculated decay rate, from asymptotic
analysis and DNS for compressible flows is also faster
than for the incompressible turbulence. These effects

have previously been modelled using heuristic arguments.

With the presented symmetry analysis a rigorous deriva-
tion from first principles is obtained.

SUMMARY AND CONCLUSIONS

The general purpose of the present work is to estab-
lish base for a physical reliable modelling of compress-
ible turbulent flows. A symmetry analysis is proceeded
to understand the different behaviour of the compress-
ible flow in comparison to incompressible. The decay
rate of homogeneous compressible turbulence is faster
than for incompressible turbulence. Also there are new
symmetries in the equations for compressible flows from
which different scaling laws can be derived.

‘We derived the invariants which are used to obtain
similarity solutions for compressible flows. These invari-
ants reduce the order of the problem and lead to sim-
ilarity solutions. The obtained analytical results from
symmetry transformation theory are compared to DNS
and show the same tendency.

An understanding of the effect of Mach number on
the symmetry properties is needed. Therefore a combi-
nation of asymptotic methods and symmetry transfor-
mation concepts is presently conceived. Further there
are concepts of approximate symmetries which will be
applied to the compressible Navier-Stokes equation as
well.
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