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ABSTRACT

Direct numerical simulation on temporal compressible
mixing layer are investigated for two convective Mach
numbers namely 0.4 and 0.8. We discuss the compress-
ibility effects on the main flow and also, on the fluctu-
ating motion by statistical treatment.

1 INTRODUCTION

Fundamental research in the compressible turbulence
field has been stimulated by a renewed interest in high-
speed flows from aircraft industry. The development
of propulsion systems based on supersonic combustion
needs a better physical understanding of the compress-
ible mixing layer. Study and understanding of the sta-
bility characteristics and transition to turbulence is of
high theoretical and practical interest. The compress-
ible mixing layer is a basic flow where mixing between
two streams plays a predominant role for the aero-
engine efficiency.

It is now well established that compressibility
can directly influence the performance of supersonic
combustion chamber. There are many experimental
evidences of compressibility effects in mixing lay-
ers. The reduced growth of turbulent shear layer
with increasing Mach number is one of the pri-
mary effects. This global effect has been observed
by many authors [Papamoschou & Roshko(1988)]
[Elliott & Samimy(1990)] [Papamoschou(1989)], but
no convincing explanation has been given.  This
growth rate reduction causes the stabilization of the
flow in supersonic regime [Sarkar(1995)]. Also, it
was also observed [Clemens & Mungal(1992)] that
the large-scale organised structures play a different
role as Mach number increases. The roll-up and

the pairing mechanisms exhibit similar features to
the incompressible case if the Mach number is low
whereas the scenario is quite different at higher Mach
numbers (M. )0.6). A review of compressible effect
was discussed by [Lele(1994)].

To characterize the compressibility effects a con-
vective Mach number M. has been introduced by
[Papamoschou & Roshko(1988)] based on previous
work of Bogdanoff [Bogdanoff(1983)]. Recent ex-
periments [Clemens & Mungal(1995)] revealed changes
in turbulence statistics and typical eddy structure
which becomes strongly three dimensional for convec-
tive Mach number greater than 0.6.

The linear stability analysis has also been developed
[Ragab & Wu(1989)]  [Sandham & Reynolds(1990)].
Temporal and spatial stability problems have been
solved and have shown that the most amplified distur-
bances remain two dimensional for convective Mach
number up to 0.6. Several direct numerical simulation
[Sandham & Reynolds(1991)] [Luo & Sandham(1994)]
[Vreman et al.(1996)] have been investigated for dif-
ferent convective Mach numbers in two and three
dimensional cases. Mixing transition to small-scale
turbulence and the different stages of vortex forma-
tions have been analyzed at low Reynolds number
(between 50 and 600). Direct numerical simulation
provides insight and guidance for the development of
turbulence models notwithstanding the low Reynolds
number limitations. = Compressible existing models
[Zeman(1991)] [Lejeune(1996)] don’t correctly describe
physics of turbulence anisotropy and three dimensional
effects in high Mach number unsteady flows, typical
characteristics of the compressibility. Solving all the
relevant scales of motion contribute to the funda-
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mental understanding of the transition to turbulence
mechanisms in compressible shear layers.

In this study, our mean aim is to investigate mixing
layer as real a mixing layer as possible to closely sim-
ulate and describe experimentally observed compress-
ibility effects. Because of the high demand on com-
putational resources for a three dimensional spatially
growing mixing layer simulation, the temporal mix-
ing layer is considered, which qualitatively exhibits the
same physical phenomena as the spatial case. Two con-
vective Mach numbers 0.4 and 0.8 are investigated. Ini-
tialized by the most amplified modes, pairing process
occurs and the above-mentioned main caracteristics of
compressibility appear. We rely our study on global
variables, vizualisations and statistical treatment to re-
veal the compressible effects on the turbulence of the
flow.

2 NUMERICAL METHODOLOGY

Three dimensional, time-dependent compressible
Navier-Stokes equations have been solved by a finite
volume method. The numerical technique uses a second
order time and space accurate Mac Cormack explicit
scheme. Based on the Simple Program Multiple
Data method, the code uses Parallel Virtual Machine
message passing library. Thus, the physical domain is
split in sub-domains, each one being associated with
one processor. The current simulations have been
performed on a T3E massively parallel computer with
64 nodes. Typical two dimensional tests have validated
the temporal code. Results of transitional mixing
layer initialized by random disturbances have been
compared with those of [Sandham & Reynolds(1991)]
and shown good agreement. This is reported in
[Sauvage & Kourta(1998)].

In order to reproduce a mixing layer as accurately
as possible, non-reflecting characteristic boundary con-
ditions developed by [Thompson(1987)] and modified
by [Poinsot & Lele(1992)] for viscous flow are imposed
at the normal boundaries (y). Streamwise (x) and
spanwise (z) boundary conditions are treated as pe-
riodic. Uniform Cartesian grid is used in spanwise
and streamwise directions whereas a refined mesh in
the center of the layer is built with a sinus hyperbolic
law. Two convective Mach numbers M. 0.4 and 0.8
have been chosen to compare the compressibility be-
haviour which would be present in the mixing layer.
M, is defined as M. = (Uy — Uz2)/(c1 + c2) where Ux
and U are the free-stream velocities and ¢; and cg
are the corresponding sound speeds. Thus, the tem-
porally evolving shear layer simulations are initialized
with an hyperbolic tangent mean streamwise velocity
profile and zero mean transverse and spanwise veloc-
ities. The temperature profile follows the Busemann-
Crocco law assuming equality of the mean temperature
in the two streams. All thermodynamic properties are
initialized to uniform values. The initial Reynolds num-
ber is based on the velocity difference across the layer

and the initial vorticity thickness. The vorticity thiclj)gg

ness is defined as 6, = (U1 — U2)/|d%/dy|maz. The
initial flow field is superimposed with two and three
dimensional perturbation modes obtained from linear
stability analysis. We have developed a code solving
the inviscid compressible equation of linear stability to
calculate amplified modes and their associated eighen-
functions ®. Results were validated through compar-
ison with various works [Sandham & Reynolds(1991)]
[Lessen et al.(1965)]. The streamwise and the spanwise
fundamental wavelengths (A, and A;) of the simulation
are chosen to be the most instable wavelengths from
linear stability theory. The streamwise and spanwise
associated wavenumbers (k; and k.) are introduced
by k. = 2m/Xzand k., = 2w/Az. To specify the ini-
tial conditions, we define a single mode as (a,f) =

(kz2a kz2z) where (aflf) are the integer wavenum-

T )
be?s. Hzg;lce, for the 0.4 Mach number case, two di-
mensional perturbations are defined by (4,0), (2,0) and
(1,0), the most amplified mode and its subharmonics,
respectively. Even if the linear stability theory implies
that the two-dimensional instability is the most ampli-
fied disturbance for M. < 0.6, three dimensional per-
turbations are introduced by equal and opposite oblique
modes (474)7 (4:'4)7 (272)7 (27'2)7 (171)) (17'1)' The am-
plitudes of perturbations have been chosen as 0.05 and
0.025 for the fundamental and subharmonic modes re-
spectively. For M. = 0.8 where the primary instability
is three-dimensional, so two pair of equal and oblique
modes (2,-2), (1,-1) were introduced. The instability
amplitudes are chosen equal to 0.05. Numerical details
on most amplified mode and computational box lenght
are summarised below.
M. | L, L, L, kz ] Rey
0,4 | 30,70 30 30,70 | 0,818 45° 200
0,8 | 24,51 30 27,49 | 0,512 | 41,72° | 400

The angle of the disturbance is defined by tanf =
kz/ks. The mesh size uses a 192 x 192 x 192 grid.
This mesh is fine encugh to compute all relevent scales.
50 T3E massively parallel computer hours have been
needed to simulate 8 and 3 wavelenghts for the 0,4 and
0,8 cases respectively.

3 RESULTS

So as to describe the compressibility effects in subsonic
flows, two convective Mach numbers have been chosen
namely 0,4 and 0,8. During the simulation, the one di-
mensional streamwise energy spectrum E(k.) (figurel)
has been computed to ensure adequate resolution. It
was defined by E(ks) = [[ i (ks)u] (ko) dydz where
tindicates a complex conjugate. Same definition was
used for the spanwise component. As the wavenum-
ber increases, a higher fall in energy occurs. The en-
ergy transfert from the large scales to the small ones
is well established. The temporal development of the
vorticity and momentum thicknesses is shown in fig-
ure 2. The evolution of these quantities is correlated
to pairing mechanism. For the 0.4 convective Mach
number, at the beginning, the shear layer extends by
diffusion. When the most amplified modes are satu-



rated, four spanwise well-developed vortices come to-
gether bound by braid regions at t=20.07 shown in the
figure 4a). The now familiar pairing could henceforth
begin to process. The decrease of the momentum thick-
ness after t=23.2 is due to the elliptical form of the two
resulting eddies (fig. 4b). Spiral arms of weaker span-
wise vorticity are ejected away from the paired struc-
tures. The second pairing could begin (fig. 4c). As the
vorticity thickness increases during the simulation, the
Reynolds number also increases with time and reaches
1680. This pairing process is two dimensional and no
three dimensional instabilities of the structure appear.
The initial three dimensional perturbations have not
been sufficiently amplified to destabilize the spanwise
direction. Several simulations have been investigated
on the influence of initial mode amplitudes. The be-
haviour of the eddies didn’t change.

For M. = 0.8, only the first step of the evolution of
the mixing layer is plotted to compare with the previous
case. The compressibility effect is clear from this curve.
The growth rate defined by dée/dt is reduced as M. in-
creases. Another important effect of the compressibility
is the three dimensional behaviour of the flow at 0.8. In
figure 5, vizualisations depict three dimensional vortic-
ity isosurfaces and cut xz vorticity plane in the middle
of the shear layer. When the most amplified modes
achieve saturation , two vortices appear in the xy plane
which develop A-shaped structures in the spanwise di-
rection. The "hair-pin” mechanism can occur in both
the upper- and lower-stream flows.

Mixing layer self-similarity requires
[Moser & Rogers(1993)] linear evolution of the
momentum thickness. Since the computational domain
is finite in the homogeneous directions, it is very
difficult to achieve self-similarity with direct numerical
simulation initialized by small disturbances. Never-
theless, the growth rate can be approximated on the
figure 2 when pairing can no longer occur at the end
of the simulations, giving 0.112 and 0.053 at Mc=0.4
and 0.8 respectively. We have plotted these values (see
figure 3), normalised by the incompressible growth
rate d§/dt = 0.181, given by [Brown & Roshko(1974)]
to compare with experimental data gathered by
[Lele(1994)]. The result is in good agreement with the
self-similarity hypothesis.

Now we will analyse the fluctuating motion. We
introduce statistical profiles at the end of the simu-
lations, when a single vortex subsists and cannot un-
dergo an other pairing. Averaged variables in a tem-
poral mixing layer are function of time and the nor-
mal coordinate y only. They are obtained by averag-
ing all the variables in the homogeneous plane (x,y).
formed by steamwise and spanwise directions. Whereas
[Vreman et al.(1996)] used integrated profiles, we pur-
pose here to study balances of Reynolds stress, en-
ergy and vorticity equations in order to describe locally
the compressibility behaviour in the shear layer.The
Reynolds stress averaged equations using weighted
mass average are:

7t (puiug) =10 + &35 + &5 + Tg + Ui + Dij + T

with IL; = —pu;u, Uj x — pu;-u’,;Ui,k = production

Dy = — (pu; u;. u’,;) k= turbulent diffusion

o , ou”, , ou’ S dissi ti
E'J = _Uik —‘La$k — ij _L@:rk. = VISCOuUS daissipation
Ty = —u; (P;—%5,) —u; (P —Tirx) =

turbulent mass flux

’ ”
‘I’ij = aikuj

) + (a; kul) = molecular diffu-
Jk K
sion
D;j = — (p’uz) - (p’uj) ~ = pressure gradient
»J i3
Yi; =p (u;, +u),;) = pressure-srain

Reynolds stress balances reveal that the contribu-
tions of puju; and pugu, are negligible compared to
other components for the two cases, their amplitude
is 5 % of the smallest diagonal component . Further-
more, (3,3) is also negligible for 0.4 case as explained
above. The normal profiles for the tensor IL;;, ®;;, D;;
and Y;; have been plotted in figure 6 for Mach number
0.4, nondimentionalized by p, (U ¢/6u,. The produc-
tion term Ilio is negative, while II;;1 is positive. The
other componants are negligible. All along the normal
direction, the amplitude of II12 is higher than in the
streamwise direction. Thus, the Reynolds stress Ri2
supplies mean motion with energy through the produc-
tion term whereas the streamwise component I1;; takes
this energy back. This energy is later redistributed by
others terms and supplied to the fluctuating motion.
The pressure strains T1; and Y22 seem to be stricktly
opposite whereas Y12 is negative. The pressure strain
acts to distribute energy between streamwise and nor-
mal directions. Compared to the other terms, the dis-
sipation has little contribution to the shear layer devel-
opment. Futhermore, the turbulent diffusion ®;; plays
the role of energy well and contribute to propagate tur-
bulence into the layer. In the Reynolds averaged equa-
tions, only D22 and Dio play significant parts in the
energy balance. Di2 balances the important turbulent
diffusion ®12 whereas the less energetic D22 component
contributes to balance the pressure-strain influence.

The reduction of the growth rate of the mixing layer
for 0.8 case is clearly shown with the normal profile of
the Reynolds averaged stress (figure 7). Stress ampli-
tudes are lower than M. = 0.4 case. Symmetric be-
haviour in the normal profile is explained by the tran-
sitional process which has not hitten the shear layer.
This explanation is supported by the low rate of the
normal Reynolds stress componant and also, by the
higher streamwise production amplitude in relation to
R11, R33 and R12. Here, sz, Hgg and H12 which are
negative, contribute with different intensities to keep
mean motion going on II;; component. The pressure
strains’ contribution to energy balance is as important
as in 0.4 case. However, the streamwise component
711 which is also negative, distributes energy not only
to normal direction but also to the spanwise direction
with equal intensity. In other words, tridimensional-
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ity and mixing layer growth are both supported by the
streamwise fluctutating flow.

4 CONCLUSION

A study of compressible effects on large structures has
been described in this paper. DNS of temporal com-
pressible mixing layer have been performed for two con-
vective Mach numbers 0.4 and 0.8, using second order
Mac Cormack scheme and parallel algorithm. Initially
perturbated by the most amplified modes of linear sta-
bility theory, the shear layer grows while giving birth to
large eddies, which roll up and pair successively accord-
ing to the Kelvin-Helmoltz process. As the convective
Mach number increases, the growth rate of the mixing
layer decreases as predicted by linear stability theory
and experiments by a factor of two. Whereas the flow
is dominantly two-dimensional for the M. = 0.4 case,
three-dimensionality is characterized by A-shaped vor-
tex development for M. = 0.8 case in the transitional
process. This behaviour is explained by the greater im-
portance of the spanwise Reynolds stress components
in the latter case and the lower contribution of the
Reynolds stress components.
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