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ABSTRACT

Direct numerical simulations of a turbulent axial vor-
tex are performed both with and without an externally
applied strain field. The global behavior of the tur-
bulence and detailed profiles are examined. Without
strain, the turbulence shows transient growth, but ul-
timately it decays as the flow is stabilized. Simulations
with strain are able to capture the instability due to
strain only for cases with an axial flow and sufficiently
high Reynolds numbers.

INTRODUCTION

Results are presented from a numerical study of a
turbulent axial vortex including the effects of an ex-
ternal strain field. This work is motivated by the wake
hazard problem for commercial aircraft where the wing-
tip vortices behind large aircraft present a serious safety
concern for following aircraft. In order for progress to
be made in the prediction and control of these vortices
it will be helpful to have a better understanding of how
turbulence within these vortices behaves and how the
turbulence affects the distribution of vorticity. The ef-
fect of strain is included because each vortex of a trail-
ing vortex pair induces a strain field on the opposite
vortex. The strain creates an instability which affects
the development of turbulence within the vortex.

There have been several experimental studies of tur-
bulent vortices, which are discussed in the papers by
Devenport et al. (1996) and Leweke and Williamson
(1998). Numerical simulations of an isolated turbulent
axial vortex have been presented in a series of papers
by Ragab and Sreedhar (1995). Recently Orlandi et al.
(1998) have simulated a pair of turbulent vortices corre-
sponding to the experiments of Leweke and Williamson.
The objective of the current study is to help improve
our understanding of the turbulent axial vortex and its

response to strain.
ISOLATED VORTEX

The vortex under consideration is time-developing
and, therefore, homogeneous in the axial (z) direction.
This corresponds to a vortex far downstream, under
the approximation that the flow changes slowly in the
streamwise direction.

Numerical Method

The computer code used for the isolated vortex sim-
ulations (i.e. without strain) is a modified version of
the code of Blaisdell et al. (1993) for simulating com-
pressible homogeneous turbulence. The compressible
Navier-Stokes equations are solved; however, the Mach
numbers are low, and compressibility effects are in-
significant, as is verified by noting that the density
varies by less than 2%.

The code uses a Fourier spectral method with pe-
riodic boundary conditions in all three directions. To
avoid the undesirable influence of image vortices, a co-
ordinate mapping due to Cain et al. (1984) is used in
the = and y directions to move the periodic boundaries
to infinity. More detail about the numerical method
can be found in Blaisdell et al. (1993) and Qin (1998).

Simulations

The initial mean velocity field is that of the g-vortex
(Ragab and Sreedhar, 1995), which includes an axial
wake flow, and is given by
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where V; is the magnitude of the wake flow, # = yr/ro,
1o is the location of the peak tangential velocity, the

constant v is the root of 1 + 292 = 372, and g¢o is the
initial swirl number. The initial mean tangential and
axial velocity is shown in figure 1. The initial turbulent
velocity field consists of small amplitude random dis-
turbances with a specified intensity profile. Two types
of disturbance profiles are used. The first is a Gaus-
sian profile and the second has its peak disturbance in
an annular region, as shown in figure 2. Also cases are
run with high and low disturbance levels using each of
these profiles. The parameters for the simulations run
are shown in table 1. All the simulations were done at
a Reynolds number Re = I'oo /v = 16500. The compu-
tational grid used had Nz x Ny x N, = 128 x 128 x 256,
except for Case B, which has a 256 x 256 x 128 grid on
a domain that is half as long. Case F does not include
any mean axial flow. For case A, an ensemble of four
simulations using different random initial disturbances
were run in order to obtain high-quality statistics.

Results and Discussion

One can get a global sense of the stability of the
flow by considering the global turbulent kinetic energy
(volume averaged turbulent kinetic energy within a ra-
dius R = 5r9). This is plotted in figure 3. Time is
nondimensionalized by T = 2770 /Ve(r0,0). The initial
value of ¢ is such that the flow is unstable and so the
global turbulent kinetic energy grows. As pointed out
by Ragab and Sreedhar (1995), the wake magnitude de-
cays in time which eventually stabilizes the flow. There-
fore, the global turbulent kinetic energy reaches a peak
and then decays in time.

The behavior is qualitatively the same regardless of
the type of initial disturbance profile or the level of the
initial disturbance. In fact if the time axis is shifted
appropriately the curves line up with one another, as
shown in figure 4. Here the data is plotted on semi-log
axes so the region of exponential grown can be clearly
seen. Because of the similarity in the behavior of the
simulations, only case A will be considered further in
examining the isolated vortex simulations.

The mean axial velocity is shown in figure 5. At early
times the wake profile changes slowly, until the turbu-
lence has a chance to develop. The wake then decays,
as one would expect. The mean tangential velocity is
given in figure 6. It shows decay of the peak veloc-
ity and an outward motion of the location of the peak,
as one would expect. However, at later times, when
the flow is stabilized, the location of the peak velocity
moves inward. Therefore, the vortex displays an anti-
diffusive behavior. Also note that the mean tangential
velocity close to the vortex center initially decreases
and then increases at later times. Usually one thinks
of turbulence gaining energy from the mean flow; how-
ever, here is a case where, during the stabilized period,
as the turbulence decays, the turbulence gives energy
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to the mean flow and strengthens it.

The circulation is given by I'(r) = 27rVp. Its initial
profile has a monotonicly increasing circulation, which
indicates that the case without any axial velocity is sta-
ble according to Rayleigh’s criterion. The circulation
profile (not shown) develops a very slight circulation
overshoot, which moves outward in time. However, the
region of decreasing circulation does not seem to give
rise to an instability.

The evolution of the profiles of turbulent kinetic en-
ergy (TKE) is shown in figure 7. Initially the TKE has
a Gaussian shape and a low amplitude. The turbulence
grows in an annular region, peaked near the location of
the inflection point in the mean axial velocity profile.
When the flow becomes stabilized the peak in the TKE
moves to the centerline, and the amplitude decays.

The Reynolds shear stresses are shown in figures 8-
10. The Reynolds stresses generally grow and decay
with the TKE. The stresses v;v. and vyv} remain fairly
compact in their distribution; however, the shear stress
W continues to spread outward at later times, and
the location of the peak seems to match the location of
the circulation overshoot. At later times the Reynolds
shear stresses develop a region near the center of the
vortex where the sign of the stress changes. As will
now be shown, this is associated with the anti-diffusive
behavior discussed earlier.

The eddy viscosity, defined by

U
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where S;; is the mean strain rate tensor, is plotted in
figure 11. We see that the eddy viscosity becomes much
greater than the molecular viscosity. At later times vr
becomes negative near the center of the vortex. This
is where the anti-diffusion of the mean velocity field
occurs.

Figure 12 shows a visualization of the vortex at a
time when the TKE is near its peak. (This visualiza-
tion is actually taken from a test case using the b-spline
code mentioned in the next section.) The vortex devel-
ops helical vortex structures, which correspond to the
dominant instability modes. As the turbulence decays,
the helical vortex structures slowly disappear and the
peak vorticity magnitude moves to the vortex center.

VORTEX WITH STRAIN

As we have seen above, the isolated vortex becomes
stable and ultimately the turbulence decays. For a pair
of vortices, as in the wake of an airplane, each vortex
induces a strain field on the other vortex. The strain
gives rise to an instability in which the long-wavelength
modes are known as the Crow instability (Crow, 1970)
and the short-wavelength modes are known as the Wid-



nall instability (Widnall et al., 1974). In order to de-
termine the effect of externally applied strain on the
development of turbulence within the vortex, a model
problem is solved in which the vortex is subjected to
a uniform strain field. The principle axes of the strain
are in the z and y directions. The compressible code
used for the first part of this study will not work with
an added strain field. Therefore, it was necessary to
use a different numerical method for the strained vor-
tex simulations.

Numerical Method

The computer program used for the strained vortex
calculations was originally developed by Loulou (1996)
to study turbulent pipe flow. It solves the incom-
pressible equations in cylindrical coordinates using a
Galerkin formulation with a spectral Fourier method in
z and 6 and a b-spline method in r. The code has been
modified to run on an IBM SP parallel computer. A
detailed description of the numerical method is given
in Qin (1998).

Simulations

A table of the run parameters is given in table 2. Two
of the simulations included an axial flow and two did
not. The effect of varying the Reynolds number was
also examined. The parameter # = e/v*, where € is
the strain rate and v* = I'eo/(2773). The grid used for
the simulations with strain is N, = 192, Ng"** = 96,
N, =128.

Results and Discussion

The global TKE histories for the two cases with
strain, but with no axial flow, are shown in figure 13
compared to a case with no strain and no axial flow.
The case without strain shows simple decay, since the
flow is stable for all time. The cases with strain show a
transient growth period; however, they ultimately de-
cay. The simulation STRN4, which is run at a higher
Reynolds number, shows a higher level of turbulence de-
veloping. We believe the reason the simulations show
eventual decay is that the Reynolds number is too low.
Reynolds number is important to capturing the insta-
bility due to strain, as is pointed out in the analysis
of the related elliptic streamline flow by Landman and
Saffman (1987) (and others) and the homogeneous tur-
bulence simulations of Blaisdell and Shariff (1996).

The evolution of the global TKE for the cases with
strain and an axial velocity are compared in figure 14
to two cases without strain, which use the two different
computer codes. The difference between the “Spectral”
(compressible) results and the b-spline results is a de-
lay in the development of the turbulence due to differ-
ences in the initial fluctuations. The cases with strain
follow the results for the case without strain through
the linear growth stage. However, the cases with strain
continue to show growth for a longer period of time.
The low Reynolds number strained simulation even-
tually decays. However, the higher Reynolds number

case, STRN2, seems to have captured the instability
and shows sustained growth. Case STRN2 also had a
higher nondimensional strain rate in an effort to cap-
ture the instability.

With strain the vortex in no longer axisymmetric,
so it is more difficult to gather and analyze statistics.
Isocontours of the TKE averaged in the axial direction
(not shown) during the latter stages of growth in case
STRN2 show that the peak lies off the vortex axis.

There is a significant difference in the Reynolds
stresses between the case with strain and the case with-
out strain. A contour plot of the v;v; Reynolds stress
(averaged in z) is shown in figure 15 for case STRN2.
Here one can see the development of regions of large
positive stress whereas the cases without strain shown
in figure 9 has a stress that remains negative except
for a region close to the vortex center that has small
positive values.

CONCLUSIONS

Simulations of a turbulent axial vortex have been
performed with and without an externally applied
strain field. Both the global behavior of the turbu-
lence and detailed profiles are examined. Without
strain the turbulence shows transient growth, but ulti-
mately decays as the flow is stabilized. Simulations with
strain, but without an axial flow, showed only transient
growth, which is believed to be due to the limitation of
low Reynolds numbers. Simulations with strain and
axial flow showed transient growth of the turbulence at
low Reynolds numbers, but sustained growth at higher
Reynolds numbers. The instability due to strain seems
to be easier to capture in the presence of a mean axial
flow.
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Table 1: Case parameters for the isolated axial vor-
tex.

WCase I Dist. level I Dist. profile J

A low Gaussian
B low Gaussian
C high Gaussian
D high annular
E low annular
F low Gaussian

Table 2: Case parameters for the strained vortex.

Case B Re =T /v | Axial flow
STRN1 | 0.0281 19268 wake
STRN2 | 0.0404 29428 wake
STRN3 | 0.0404 29428 none
STRN4 | 0.0404 58836 none
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Figure 2: Profiles of the initial turbulent kinetic
energy.
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Figure 15: Contours of v.v, at t = 3.307".



