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ABSTRUCT

The unsteady flow structures induced by Karman vortices
and horseshoe vortices around a rectangular column are
examined using 3-D numerical computations. The non-linear
k-¢ model with the effect of the strain and rotation
parameters is adopted as the turbulence model. Applicability
of the turbulence model to the Karman vortex shedding in
the 2-D flow field is firstly investigated through the
comparison of the calculated results with the experimental
ones conducted in the closed water section by Lyn (1992)
and the model constants are adjusted. Then, the 3-D
computations of unsteady flows in open channels are carried
out focusing on the Karman vortex and the horseshoe vortex
generated around a cylinder. Effects of the depth on the 3-D
flow structures in open channels are also discussed through
the comparison of the numerical results under the different
conditions of water depth.

INTRODUCTION

It is well known that the complex flow structures induced
by the Karman vortex and the horseshoe vortex can be
observed around a bluff structure in rivers. The resistance to
the flow and the local scour around a structure are closely
related to such flows, and the prediction of the 3-D flow
behavior is important for the design of river structures.

In this study, we apply the non-linear k-& model to the
flows past a rectangular column from the practical point of
view. To resolve the excessive production of turbulent
energy k at the impinging region, the effects of the strain and
rotation parameters on the eddy viscosity are introduced in
turbulence modeling. The authors have verified the
applicability of non-linear k-& model including the effect of
strain and rotation parameters to the flow induced by the
shear instability (Hosoda et al, 1997). Prior to the study on
open channel flows, 2-D calculations of the flow field under
the conditions of the laboratory test by Lyn (1992), which is

conducted in closed water channel (Re=2.2 X 10%), is firstly
carried out to verify the applicability of the numerical model
and to adjust the model constants. The different models
(standard k-& model and three types of non-linear k-¢ model)
are applied and the differences of the results are examined in
detail. Then, the 3-D computations of the flow in a open
channel are done focusing on the Karman vortex and the
horseshoe vortex generated around a column. Effects of the
depth on the flow are also shown through the examination of
the numerical results with different flow depth.

2-D CALCULATIONS OF FLOWS PAST A COLUMN

The 2-D calculations of flows under the conditions of the
laboratory tests by Lyn (1992) and Lyn et al. (1995) (Re=2.2
X 10%) are firstly carried out to investigate the applicability
of the non-linear k-& model to the periodic flow field and to
adjust the model constants.

The basic equations are composed of the continuity
equation, the momentum equations, and the k-& equations
described below:
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Figure 1. Relation between A and Cu

where x, : spatial coordinates, ¢ : time, U; components of
averaged velocity vectors, u; : components of turbulent
velocity vectors, p : averaged pressure, p: density of fluid,
k  averaged turbulent energy, ¢ : averaged turbulent energy
dissipation rate, D, : eddy viscosity coefficient, v: molecular
dynamic viscosity coefficient, o, o, C, C, : model
constants (6,=1.0, ¢=1.3, C,,=1.44, C ,=1.92 are used.).

r C eli
The following four turbulence models were tested.

Run 1 (Standard k-z model). The Reynolds stress

tensors are evaluated by the following standard k-& model.

— 2 .
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where Cpu is a constant (=0.09). The standard k-& model has
the significant defect for the flows with impinging regions
due to the excessive production of turbulence energy k (Kato
and Launder, 1993).

Run 2, The quadratic non-linear terms of the constitutive
equation are incorporated in Run 2. The Reynolds stress
tensors are evaluated by the following equations (Yoshizawa,
1984), which are equivalent to the representation by Pope
(1975) and by Gatski and Speziale (1993).

- ko3 1
~upt, = DS, -2 ks, - —CD,ZC[,(SM - —Sﬁaaaﬁj ©
3 £ 5 3

au; oU; 1(aU, 0U; 8U, 8U; oU, U,
1y=——-7 2!.1.=__ + ) 3!.].=

Ox, Ox, 2{ ox; ox, Ox; Ox, ox; Ox;
In Run 2, C,=0.4, C,=0, C;=-0.13 and C1=0.09 are tested as
model constants.

Run_3. Hosoda et al. (1997) reported that the vortices
generated by the shear instability could not be reproduced
numerically without including the effect of the strain
parameter. In Run 3, the constants Cu, C,, C, and C, in
Eq.(6) were replaced by the functions of strain parameter, S
and rotation parameter, (2.
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Run 4. In Run 4, C,(=0.4), C,(=0) and C;(=-0.13) in the
non-linear terms are constants and Cy is set to be a function
of § and 2as follows.

C,= min(0.09,

03 ), M =max(S,Q) ()
1+0.09M?

Considerations of the Relation between Cy and M.
Some considerations about the relation between Cyzand M in
a simple shear flow, where all of the components of velocity
gradients except 9U,/dx, are zero, are made. In a simple

shear flow, since £2=S or M=, the relations between Cu and
M inRun 3 and 4 are shown in Figure 1.

When the wall function method is applied as the wall
boundary condition, the numerical value of A evaluated by
the wall function is 1/4/2x0.09 ~2.36. It is indicated that
the non-linear k-& models in Run 3 and 4 do not change the
near wall boundary condition because Cu= 0.09 at M =
2.36 in both the models.

The constraint for Cu itself can be derived from the
condition of realizability.
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The condition of positive turbulent intensities requires the

constraint denoted by Eq.(11).
et (11)
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The relations in Eq.(11) substituted by C, and C; in Run 3
and Run 4 are described in Figure 1. It is indicated that the

realizability condition for a simple shear flow is satisfied in
both the computations with Run 3 and Run 4.

oU, (10)
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Figure 6. k’=k/U,? on x-axis near the impinging region

Sutli f Numerical P |
Descritization of the Basic Equations. The basic

equations, (1)-(4) were discretized using the finite volume
method in the staggered grid system. The QUICK scheme
was applied to the convection terms and the central
differencing was used for the diffusion terms in the
momentum equations. The Hybrid central upwind scheme
was applied to the & and ¢ equations. The Adams-Bashforth
scheme with second-order accuracy in time was used for
time integration of each equation. The basic equations were
discretized as fully explicit forms and were solved
successively along the time axis step by step. The pressure
field was solved using iterative procedure at each time step.

Boundary and Initial Conditions. The flow domain

in the calculation is shown in Figure 2.

The numerical grid used in the calculation is a variable
rectangular one shown in Figure 3. The smallest distance of
the grid lines near the column is 2mm (=D/20) and the
maximum stretching of successive cells is limited to 0.9=¢q,,
q,=1.1, where ¢, = Ax/A4x,, and q,=4y/Ay,,. The number of
the grid-points is 112 in x-direction and 92 in y-direction.

The wall functions were applied as the wall boundary
conditions. At the down-stream end of the calculated domain,
a zero stream-wise gradient was specified for velocities, k
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2.0

and & At the boundary inlet, the level of k£ was chosen to
match the turbulence levels (= 2%) in the experiment by Lyn.
The value of ¢ at the inlet was determined from the value of
k at the inlet and Eq.(5) by specifying the ratio Dt/v= 10
(Bosche and Rodi, 1998).

At the beginning of the calculations, U=U=55cm/s, V=0,
k =k, and ¢ =¢,, (k, and g, are the values of k and & at the
inlet boundary) were specified over the whole calculated
domain.

Consi i Cc e

In the calculated results for all Runs, the Karman vortex
shedding was detected. The Strouhal number (St = fD/U,) of
the vortex shedding in all Runs was within the range of
0.144 to 0.146 and was about 11% larger than the
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experimental value (St=0.13).

Figure 4 shows the distribution of the non-dimensional
velocity component U/U, along x-axis. The length of the
recirculation zone calculated in Run 1 is apparently too long
and the recovery of the velocity at the downstream region of
the recirculation zone is too slow. The recirculation zone in
Run 2 is a little larger than the experimental one. On the
other hand, Run 3 underpredict the length of the
recirculation zone. Run 4 calculated precisely not only the
length of the recirculation zone but also the whole
distribution of the velocity.

The comparison of the non-dimensional turbulence
energy k’ (=k/U,%) is shown in Figure 5. The calculated
values of k' in all models are considerably smaller than the
experimental one. The similar discrepancies of k are
indicated in the 2-D calculations with linear k-& model by
Bosch and Rodi (1998) and with RSM by Franke and Rodi
(1993). Bosch and Rodi (1998) pointed out that the low-
frequency modulation due to 3-D large-scale structure in the
laboratory test can not be captured by the 2-D calculations,
and thereby the calculated &’ becomes much smaller than the
experimental one.

The distribution of &’ near the impinging region in Figure
5 is enlarged in Figure 6. Run 1 and 2 have large values of &’
just before the impinging. The productions of & in Run 3 and
4 are suppressed. This figure demonstrates that the non-
linear k-& model with the effects of S and (2 can suppress the
excessive production of & near the impinging region and the
quadratic terms have no effect for the suppression.

Figure 7 (a) - (d) show the distributions of time-averaged
turbulence energy k' near the column. The distributions in
Run 1 and 2 are similar and have two peaks at the side and
near the leading edge of the column. In Run 3 and 4, k
around the column is smaller than that in Run 1 and 2.

Figure 8 (a) and (b) show the periodic part of the non-
dimensional fluctuation energies in x-component, k,,, and in

px>

y-component, k,,, along x-axis. Every model overpredicts the
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Figure 10. Total fluctuation energy on x-axis

peak value of k,,. Run 4 particularly gives very large values
of k,, compared with the experiment. In the time trace of the
stream-wise velocity in Run 4, the considerable deviation
from periodicity was detected (Figure 9). It is supposed that
the excessive production of k,, in Run 4 is caused by such
irregularity of the velocity fluctuations. As for k,, the peak
value in Run 1 is very small and that in Run 2 is also a little
smaller than the experimental one. Run 3 and 4 well
predicted the peak value of k, and the longitudinal
distribution in Run 4 was in good agreement with the
experimental one over the whole part of the plot.

Figure 10 shows the comparison of the non-dimensional
total fluctuation energy k,” (periodic part + turbulence part)
along x-axis. The result in Run 1 is significantly smaller than
the experimental one. Though the calculated peak value in
Run 4 is slightly larger than the experimental one, Run 4
gave the most suitable distribution.

The transverse distributions of r.m.s. (root mean square)
of the non-dimensional velocity variations (periodic part),
U,,s and V,, in Run 3 at two sections (/D = 2.5 and ¥D =
4.5) are shown in Figure 11 (a) and (b). In the section at
x/D=2.5,V, has a peak on the center-line (yD=0), and U,
around y/D=0.7. The calculated results of the velocity
variation in x/D=2.5 are in good agreement with the
experiment ones. In x/D=4.5, the differences between the
calculated and the experimental results both of U,, and V,,,
become larger compared with the results in x/D=2.5. It is
pointed out through the examination of Figures 8, 10 and 11
that the model used in Run 3 could reproduce the periodic
feature of the flow pattern qualitatively, though the model
could not reproduce precisely the damping of the velocity
variations toward the down-stream direction.

3-D CALCULATIONS OF FLOWS IN A OPEN
CHANNEL

The laboratory test was performed in the open channel
with 15m (length) X 20cm (width). The averaged depth
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was h =1.14 cm (W/D=0.285) and the averaged velocity in
the main flow at the upstream of a column was 18.18 cm/s
(Re=8400, Fr=0.54). The square column with the side length
of 4cm was placed on the center line of the channel.

The flow domain was divided into 10 (depth-wise
direction) X 36 (transverse direction) X 120 (stream-
wise direction) control volumes.

Numerical Method

The turbulence model in Run 3 was used in the
calculation of the open channel flow. Numerical
procedures were the same as those used to reproduce the
Lyn’s experiment except for the free surface treatment as
summarized below.

The free surface elevation was calculated by solving
the continuity equation integrated over the control
volume of the surface layer. To consider the rapid
attenuation of turbulent intensities in the depth-wise
direction near the free surface, the eddy viscosity was
multiplied by the following dumping function.

(12)

e
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C
where sub-s indicates the value at the surface layer. The
turbulent dissipation rate at the surface layer was

evaluated by the following formula proposed by

Figure 13(a). Time trace of U (y/D=0)
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Figure 13(b). Time trace of U (y/D=1.5)
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Sugiyama et al. (1995) to calculate the secondary
currents of 2nd kind.
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g =—t—— (C, =009
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(13)

Considerations of Calculated Results

Figure 12 shows the time-averaged distributions of U in
the laboratory test and the numerical simulation along 4
cross sections in the right part of x-axis. This figure indicates
that the general time-averaged flow pattern around the
column is simulated qualitatively. ’

Figure 13 (a), (b) show the comparison of temporal
variations of U in the experimental and numerical results at
two points ((x/D, y/D) = (4,0) and (4,1.5)). Good agreements
can be seen in the periods of the variations in both the results
at each point. The period at (D, y/D) = (4, 1.5) coincides
with that of the Karman vortex shedding and the period at
/D, y/D) = (4, 0) is the half of that. The Strouhal number of
the Karman vortex is St = 0.253 and is about 11 % larger
than the observed one (St = 0.231).

For the examination of effects of the depth to the 3-D
flow structures, additional calculation was carried out under
the depth of 4/D=0.855, which is three times larger than the
experimental one. Plan views of the instantaneous flow
pattern at z=h/2 are shown in Figure 14 (a) and (b). The
Karman vortex shedding is generated in both the figures.
The recirculation zone at the downstream region of the
column in Figure 14 (a) is larger than that in (b). Figure 15
(a) and (b) show the instantaneous flow pattern at the
vertical section across the column in y-direction. Near both
side-walls of the column, downward flows occur, on the
other hand, flows away from the column are generated near
the bed. Figure 16 (a) and (b) show the flow pattern at
vertical section along x-axis. In upstream region of the
column, a vortex in clock-wise direction is generated near
the bed. The 3-D flow pattern shown in Figure 15 and 16
indicates the formation of the horses-shoe vortex.
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CONCLUSIONS

The computational methods based on the non-linear k-&
models with the quadratic terms are applied to unsteady
flows around a square column. The main results obtained in
this study are summarized as follows:

3. 2-D calculations of the flow in a closed water section
show that the standard k-¢ model underpredicts the
periodic motion considerably, and the non-linear k-
model with the effects of the strain and the rotation
parameters can suppress the excessive production of
turbulence energy around a column.

. 3-D unsteady flow patterns in open channels, ie., the
Karman vortex shedding and the horse-shoe vortex
formation, were reproduced qualitatively by the 3-D
calculation with the non-linear k-& model.
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