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ABSTRACT

The R» behaviour of low-order (n = 2 and 4) mo-
ments of velocity increments and derivatives has been
examined in anisotropic shear flows over a significant
Ry range. The inertial range scaling exponents for
transverse structure functions are observed to approach
those of the longitudinal structure functions. Their rel-
ative behaviour suggest that any inequality may dis-
appear at Rx ~ 5000, depending on the degree of
global anisotropy present. The 4th-order moments of
the transverse velocity derivative have approximately
the same R power-law exponent as the equivalent lon-
gitudinal velocity derivative moments.

INTRODUCTION & MOTIVATION

In 1941 Kolmogorov (1941, hereafter K41) published
several seminal hypotheses that have shaped the course
of small-scale turbulence research. A key point of these
hypotheses was the assumption that the description of
the small-scale structure of turbulence, at high Tay-
lor microscale Reynolds number (Rx = u'A/v, A =

u'/ <(6u/6x)2>1/2), could be sufficiently described by
the notion of local isotropy (LI). Further attention has
been afforded to the theory of small-scale turbulence
since it was observed that the turbulent dissipation
rate € is intermittent (e.g. Kolmogorov, 1962; here-
after K62). A consequence of the intermittency of e is
that the nth-order moment of the longitudinal veloc-
ity increments ((6S.)™) need no longer scale as n/3,
although exhibiting a power-law behaviour in the IR,
viz. ((6S1)™) ~ M with ¢r(n) # n/3. Up un-
til now, the similarity hypotheses (e.g. K62) did not
distinguish between moments of longitudinal velocity
increments or transverse velocity increments. Recently,
experiments (Herweijer & Van de Water, 1995; Kahaler-
ras et al.,, 1996) and simulations [Chen et al., 1997;
Grossmann et al., 1997) show that scaling exponents
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associated with transverse increments may be slightly
smaller than those for longitudinal increments. Al-
ternative experiments have shown them to be signifi-
cantly smaller (Antonia & Pearson, 1997; Antonia et
al.,, 1998b). These significant differences may be ex-
plained, partly, by the choice of definition for the trans-
verse increment and transverse scaling exponent, espe-
cially for shear flows at low to moderate Rx. There is
partial evidence (Dhruva et al., 1997; Antonia & Zhou,
1998) to indicate that the magnitudes of {,(n), where v
is the transverse velocity fluctuation, may increase with
R», leaving open the possibility that, at asymptotically
large Rx, Cu(n), and (u(n) will be equal.

Another consequence of small-scale intermittency
and RSH is that moments of Kolmogorov normalized
velocity derivatives, can now be R, dependent. The
overwhelming majority of experimental and computa-
tional data indicate that the magnitudes of the skew-

ness Spy/9: = ((811,/631;)3)/(((‘911/(’?3:)2)3/2 and flatness

factor Fou/os = ((Bu/8z)*)/((8u/dz)?)” of Bu/dz in-
crease monotonically with R (see the compilation of
Sreenivasan and Antonia, 1997; hereafter SA97). An
exception to this trend are the measurements of Tabel-
ing et al. (1996) (see also Willaime et al., 1998 and
references therein). In their experiment the magnitude
of Fau 8, is observed to increase with Ry, in a similar
fashion to that compiled by SA97, except for a ”tran-
sitional knee” in the region of Ry ~ 700 to ~ 1100.
In this region Fp, s, increases dramatically, indicat-
ing an extra increase in intermittency, before return-
ing to values commensurate with those compiled by
SA97. The corresponding behaviour for Sa./a, is un-
remarkable, the scatter in data comparable to SA97. It
is speculated (Willaime et al., 1998) that the “transi-
tional” behaviour around this "knee” is associated with
the instability and breakdown of intense vortex fila-
ments (Jimenez et al., 1993) called "worms”. There is



less information available for the dependence of F, /5.
= ((61)/8:1:)4)/((61)/6:6)2)2 on Ry; the limited experi-
mental data (Antonia et al., 1996) to date suggest that
for Ry < 200, Fy, s, increases with R at a rate com-
parable to that for F5,/5,. The wake data of Antonia
et al. (1996) indicate that the magnitude of Fjy, g, is
larger than that of Fp, /o, but comparable to that of ei-
ther Fp, sy or F,,, where w, is the spanwise vorticity
fluctuation; the significant difference between Fp, o,
and Fp, o, is also evident in numerical simulations
[e.g. Siggia, 1981; Boratav, 1997, Antonia et al., 1998a;
Grossmann et al., 1997; Chen et al., 1997; Jimenez et
al., 1993]. Siggia (1981, hereafter S81) implied that the
instantaneous dissipation rate e and enstrophy w? may
exert different influences on moments of velocity deriva-
tives. He showed that, for homogeneous isotropic tur-
bulence, the fourth-order velocity derivative moments
can be expressed in terms of four scalar quantities (ro-
tational invariants), Io [a =1 to 4]. These invariants
have been numerically (S81; Kerr, 1985; Gotoh & Ro-
gallo, 1995) and experimentally (Tsinober et al., 1992;
Zhou & Antonia, 1999) estimated, albeit for low Rx
flows. The numerical results, as a whole, suggest that
at least two distinct exponents are needed, one for the
strain and the other for the vorticity which supports
the implication of S81. The experiment of Tsinober et
al. (1992) indicated Iy — I4 to be closer to the cor-
responding Gaussian values. Zhou & Antonia (1999)
measured the ratios I2/I, I3/I1, and I4/I; in grid tur-
bulence; these ratios were approximately constant over
the low R, range investigated, implying that knowledge
of only one invariant is required. They concluded that
this result supports the model of Phan-Thien & Antonia
(1994) which proposes that the isotropic fourth-order
velocity derivative tensor can be described in terms of
only one invariant.

Although the longitudinal relative scaling exponent
¢r(n) has received a great deal of attention, in the con-
text of R dependence [e.g. Arneodo et al. 1996] there
has, as yet, not been an equivalent investigation for
¢r(n). A principal aim of this paper is to conduct such
an investigation for {r(n) [n = 2,4] over a relatively
wide Ry range [~40 to ~ 1400]. Of interest is the equal-
ity {r(n) = (r(n) - either it is not valid or it may be-
come valid at high Rx. A secondary aim is to conduct
an investigation of the Ry dependence of Fj, /5, in the
spirit of SA97 and Willaime et al. (1998). It is of in-
terest to know whether Fj, /9, increases monotonically
with Ry, as reported by SA97 for F5, 5., or whether
it exhibits a ”transition”, as reported by Willaime et
al. (1998). The low Ry experimental and DNS results
suggest that transverse gradients are more intermittent
than longitudinal gradients. It of interest to establish
if the relative rates of increase with Ry for Fy, 5, and
Fyy /05, in the context of S81, are different.

EXPERIMENTAL METHODS

A significant amount of data from a number of differ-
ent flows over a wide range of Ry (40 < R < 1400) was
analyzed for this paper. The following flows were used:
cylinder wakes Ry ~ 38 and Rx ~ 210 (Antonia & Pear-
son, 1997); pipe - single-wire (67 < Rx S 337); X-wire
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data (68 < Rx S 335) (Pearson, 1999);plane jets —
single-wire (500 < Ry < 1400), X-wire data Ry ~ 535
(Antonia et al., 1997b), 666 < Rx < 1170 (Pearson,
1999). In each flow, a crossed hot-wire probe was used
to measure u and v velocity fluctuations. Other than
the following brief comments, a detailed description
of each experiment can be found in the cited refer-
ences. Also, we have recently measured spatial trans-
verse increment on the centreline of a plane jet at high
Rx(~ 1000) using parallel wires (Zhou et al., 1999).
Data were acquired with in-house constant temperature
anemometers at an overheat ratio of 1.5. Signal condi-
tioning was achieved with an in-house amplifier/low-
pass filter (24 dB/octave) combination. We make use
of Taylor’s hypothesis to convert time to space. Most
of the data have high values of u'/(U) and should be
corrected in the high wavenumber/small-scale range.
We have not applied any corrections - except for the
technique discussed in the section dealing with deriva-
tives. We estimated the number of independent sam-
ples, N =t,/2T,, (Tennekes & Lumley, 1972) and con-
sider it to be indicative of the worst-case scenario. Here
t, is the total record length time and Ty is the integral

T0
time-scale [= [ puu(7)d7; where py.(7) is the longitudi-

0

nal velocity autocorrelation function and 79 is the time
at which the first zero crossing occurs]. Typically, be-
tween 15000 and 45000 independent longitudinal sam-
ples were obtained for the flows.

RELATIVE SCALING EXPONENTS

Convincing scale invariance for nth-order moments of
881, has yet to be observed in experiments (e.g. Ansel-
met et al., 1984), possibly due to a number of reasons,
e.g. lack of such spatial homogeneity, insufficient R,
mean shear and global anisotropy. Therefore, we will
only consider relative scaling exponents estimated us-
ing ESS (Benzi et al., 1993). For this study, {z(n) is
estimated, with » and r in the direction of the mean ve-
locity [i.e. 6SL = u(z +r) — u(z)], by <|(6SL)“|"/“> ~
(1(65L)2])¢=™ in the range where ((6S)%) best shows
approximate linearity with 7. The first {7 to be con-
sidered, (r,1(n) (e.g. Antonia & Pearson, 1997; An-
tonia et al., 1998b), is a relative comparison to 6SL
viz.(|(6S7)*™/*) ~ (|(6SL)*)¢T1 (™, i.e. both St and
6ST are temporal and measured with the X — wire
probe, e.g. §St = v(z+r)—v(z). The second, is {r,2(n)
viz.(|(6Sr)*[™*) ~ (|(6Sr)?])¢7:2(™) ,which, while hav-
ing less theoretical justification than {r,1(n), has been
previously reported (Herweijer & van de Water, 1995;
Kahalerras et al., 1996) for spatial S, e.g. u(z+7) —
u(z). A new type of transverse scaling component is in-

vestigated, e.g. (r,3(n), viz. <|(5SL)G(5ST)2“|"/3°> N

<|(6SL)“(6ST)2°|>CT’3(n). For isotropic turbulence the
moment (65 (6S7)?) should also scale like r (Monin
& Yaglom, 1975). Lastly, (r,4(n) is a spatial one,
viz. (|(8S1)*™*) ~ (I(6SL)?|)¢*(™) where 6ST =
u(z +r) — u(z). To date we only have one Rx(~ 1000)
result available (Zhou et al., 1999).

To estimate any ((n) from ESS type cross-plots a



linear regression curve fit is required to log-log data.
There is uncertainty en(r) associated with both the
abscissa and ordinate variables and these uncertain-
ties must be accounted for in the linear regression
method. We use a modified result of Benedict and
Gould (1996). They proposed a general formula for
the variance of a centered stochastic variable, v, with
unknown distribution to be, for the nth-moment, e.g.
vary(n) = vzn = (¥n) + (Mm—1)*Y2n+1 — 20Yn419m-1.
We have ignored the fact that results for odd-order mo-
ments are slightly inaccurate as the variables |68(r)|
(where (3 is either u or v) are not centered. Note that
this method requires knowledge of the higher-order mo-
ment; in practice we must tolerate some non-closure.
With the variance calculated for all values of (|65(r)|™),
it is now possible to fit power-laws to cross-plots of
{|68(r)|™) versus {|68(r)|*). Note however that we must
take into account the associated variance for each point
in both the abscissa and ordinate directions. There are
many methods to use — a good outline of the topic is
given in Press et al. (1994). From Press et al., we have
chosen to use a x? minimization scheme (their routine
fitezy) although it assumes the variance to be normally
distributed — a small and insignificant error consider-
ing that the final uncertainty in ¢ is mostly dependent
on N.
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Figure 1. R, dependence of scaling exponents for
((6)2), ((6v)2) and (|6u(6v)?*’%) for Ry ~ 40 — 1400.
In Figures 1 and 2 both single & X-wire data is used for
¢r(n). Regions marked A, B, C and D, are discussed
in the text. Uncertainty bars are not shown for clarity.
0, ¢L(2); O, ¢r,1(2); x, ¢1.2(2); V, ¢1,3(2); W, (7,4(2)
(a single point indicated by the arrow).

Figures 1 and 2 show the R, dependence of the five
scaling exponents for n = 2 and 4, respectively. Typ-
ical uncertainties range from ~ 0.017 to 0.025 for ¢(2)
and 0.033 to 0.05 for {(4). ¢z does show a slight Ry de-
pendence and this trend is upward increasing for n = 2
and downward decreasing for n = 4 and since cross-
plotting is relative to n = 3 any trend must change
sign as n crosses 3. The result for {r,1(n) is very Rx
dependent and is consistent with previous reports (e.g.
Antonia et al., 1998b). The high magnitude of the in-
equality ¢r,1(n) < {r(n), at least for small to moder-
ate R, is most probably due to the lingering effect of
global anisotropy, a (= <v2> / <u2>). Since (|(6v)%™*)
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is cross-plotted against (|(6u)|) — a different variable
— there is no change in sign for the R» dependence
trend from n < 3 to n. > 3 as there is for {1 (n), (r,2(n)
and (7,3(n). The existence of the inequality is not sur-
prising since we are estimating (r,1(n) from a cross-
plot of two different variables, éu and év, with differ-
ent longitudinal and transverse integral length scales
(ie. L. > 2L,). As o becomes smaller than 1, L,
falls below its isotropic value of L, /2. This reduction
results in (|6v|™) becoming more quickly decorrelated
than (|éu|™) — the result is a continual reduction in
the local slope as r decreases and an erosion of any
IR. However, this effect is reduced, as is the inequality
{r,1(n) < ¢r(n), as Ry increases and the overwhelm-
ing consequences are an increase in the extent of the
IR and a reduced influence of large-scale anisotropy as
scales reduce in size. Some “groups” of (r,1(n) results
shown in Figures 2 and 3 are worth highlighting. The
two high values, marked “A” at R ~ 205 are the re-
sults for the high-speed cylinder wake (i.e. u — v and
u—w centreline measurements). For these two runs, a is
equal to 0.88 and 0.89 respectively. Conversely, the low
group of seven runs marked “B” are the off-centreline
measurements for the pipe investigation. Within this
group, o ranged from 0.36 to 0.69 and S ranged from
0.06 to 0.077, the increased anisotropy results in a dra-
matic increase in the inequality {7,1(n) < {z(n). The
majority of the data (within areas marked C and D) are
centreline measurements and appear to follow a plausi-
ble R, dependence considering that « is approximately
constant (0.71 < a < 0.77). It is not implausible
that the R, trend implies a steady reduction in the
inequality {r,1(n) < {r(n), which may be minimized at
Ry ~ 5000.
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Figure 2. R, dependence of scaling exponents
for ((65.)%), ((6S7)*) and (|6SL(657)2|"*) Regions
marked A, B, C and D, are discussed in the text. Un-
certainty bars are not shown for clarity. o, ¢ (4); O,

(r,1(4); X, ¢r,2(4); v, (r,3(4); B, (1,4(4).

We note that the R, dependence of {r2(n) is not
unlike the results of Kahalerras et al. (1996) and Her-
weijer & Van de Water(1995). The values of (r2(n),
in our case, are obtained by cross-plotting against the
same component, i.e. §ST = v(z + 1) — v(z). Again,
a R, dependence is evident with a sign change be-
tween n < 3 and n > 3. An inequality between



¢r,2(n) and {r(n) exists but it is smaller than that
between {r,1(n) and ¢(r(n) and this fact is not sur-
prising since the cross-plotting of like-variables empha-
sizes the self-similarity of the nth-moment relative to
the third-moment because their origin is the modu-
lus of a common pdf. Any connection with turbu-
lence theory is tenuous. The results for (r,3(n), viz.

<|(5SL)“(5ST)2a|n/3a) ~ (|6SL6S2|)ST:3(™ appear to be
a balance between (z(n) and ¢{r,2(n,) which is the only
exponent that does not show any R dependence in Fig-
ures 1 and 2. Of current interest is the striking result for
¢r,4(n). There is no difference between the definition of
{r,4(n) and ¢1,1(n), other than the use of spatial instead
of temporal increments for §S7. Associated with this
fact is the measurement technique used to acquire §St.
However, it is expected, for LI, that there should be no
difference in the inequalities between {r,4(n) and ¢z (n)
or {7,1(n) and {1 (n). Figures 1 and 2 clearly show that a
difference does exist, and this fact may be indicative of
the effect of a on IR separations. It is naive to believe
that, in anisotropic flows, all measurements of {r(n),
whether by different technique or definition, should re-
sult in a unique globally "homogeneous” value. It is
conjectured that only an increase in Ry, with the cor-
responding increase in separation between dissipative
and integral length scales, could rectify this anomaly.

4th-ORDER MOMENTS OF DERIVATIVES IN
TURBULENT FLOWS

The use of one X — probe will yield, with the use
of Taylor’s hypothesis, the three independent compo-
nents of the fourth-order velocity gradient tensor, i.e.
R = <(6u/6w)4> ; By = <(6u/3z)2 (6v/6w)2> and
F = <(8v/6a:)4> and these three parameters are re-
lated to I, as Fy = 4I,/105, F» = I,/105 + I2/70 —
I3/105 and F3 = 31,/140 + 1115/140 — 315/35 + 1, /80.
Here, we present results for F; to F3, measured with a
X —wire probe over a large Ry range (40 < Rx < 1400).
Note that pdf methods are susceptible to anemometer
noise and probe response/resolution limitations. The
anemometer noise is easily accounted for with low-pass
filtering. The probe response/resolution correction for
pdfs has yet to be fully studied. Our crude estima-
tion method utilizes ((6a)™) to estimate ((dc/dz)™)
viz. ((Ba/Oz)™) ~ lin%((éa)"')/r". We ignore all sepa-

rations, r, below some r which we assume corresponds
to the maximum wavenumber, k1, after which the com-
pensated spectrum, ki’/ 3¢>(k1), deviates from an expo-
nential behaviour. We use a band of r, that corresponds
to the band of ki which clearly follows k3> (k1), for
extrapolation to r = 0. This band, which now consists
of spatial scales r using Taylor’s hypothesis, is indi-
cated in Figure 3 between the single and double arrows.
A cubic spline is fit between these two r scales using
a function of the type In[((6a)™)/r™] = g(r%); this is
shown in Figure 3 as hatched () line in the region be-
tween the single and double arrows. The resulting cubic
splines are used as weighting functions to extrapolate
high-order polynomials of the type In[{(6a)")/r"] =

g(a) + 3" alr') to r = 0 (the superscript j indicating
i=1
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the j** polynomial) — without the weighting provided
by the cubic splines, only low-order polynomials would
be possible. The maximum order of m is usually 9. The
estimates for ((Oa/0z)™)? i.e. exp(a)), for 1 < j <8
are statistically averaged and the mean and the +95%
confidence levels are calculated. Values of exp(a)) that
are not within the +95% limits are discarded and the
process is repeated until all values fall within the +95%
limits. This usually results in the eight estimates for
((8cr/0z)™)? being reduced to three or four. The mean
of these three or four values are then averaged with
the estimate for ((0a/dz)™) from the first method and
corresponding uncertainties are added.
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Figure 3. r~* compensated fourth-order mo-
ments of <(6SL)4>, ((5ST)4) and <(5SL)2(5ST)2> in
terms of r. Each curve is “post”-normalized by
the resulting ((6SL)*)/r*|.=0. The T and {} indi-
cate the start and finish of the extrapolation weight-
ing region. Vv, ((6SL)*)/r*; o, <(6ST)4>1{T4; o,
((6S1)?(887)%)/r*; x, spline fit to ((6SL)*)/r* or
((6ST)*)/r* or ((6S1)*(6ST)?)/r*; —, “averaged” ex-
trapolation to r = 0.

The R, dependence of Fau/s. and Fpy/p. is
shown in Figure 4; for completeness, results for Fis
= ((Ou/8z)*(Bv/0x)?) /{(Bu/Bx)?)((Bv/Bz)?), inferred
from the limiting values of r*~*((8u)?(8v)?), have been
included. All three quantities appear to increase with
R, at approximately the same rate (the power-law ex-
ponents being 0.27 £ 0.05; 0.30 &= 0.08 and 0.29 + 0.06,
respectively). In particular, there is no indication of
a “transitional” behaviour at Ry ~ 700, as observed
by Tabeling et al. (1996). Similarly, Figure 5 shows
that, the ratios F3/F; = ((av/aw)“)/(g@u/ax)‘i) and
Fy/Fy = ((8u/0z)*(8v/8z)*) / {((du/dz)*) are approxi-
mately independent of Ry (here, the power-law expo-
nents are -0.03 = 0.04 and -0.04 + 0.03, respectively).
This result consolidates the earlier suggestion (Antonia
et al., 1996), based on a limited Ry range (Rx < 200),
that Fp, s, increases with Rx at a rate comparable
to that for Fp, 9, The present averaged values of
F5/Fy and F»/F, assuming Ry independence, are close
to about 5.52 and 0.84. The power-law exponents for
Fu/az and Fa, 5, are in reasonable agreement with
the model of Pullin & Saffmann (1993; n = 0.25) based
on the Lundgren-Townsend vortex model for small-scale
turbulence. This model predicts that all velocity deriva-
tive moments increase at an equal rate. Indeed, Pullin



& Saffmann also predict F3/F; = 6, independently of
R, which is in good agreement with the current exper-
imental results, considering the difficulty of acquiring
adequately resolved fine-scale measurements. Also in-
cluded in Figure 4 are DNS results. The DNSs [e.g.
S81'; Boratav®, 1998, Antonia et al., 1998a®; Gross-
mann et al., 1997; Chen et al.’, 1997; Jimenez et al.%,
1993] were all completed under different conditions,
e.g. stationary/non-stationary, forced/unforced and
full Navier-Stokes/high-symmetry assumption, and ir-
respectively of this, all tend to approximately the same
R, independent value. Although the current results
show that F, Fo and F3 increase with R, at approx-
imately the same rate, and, as a consequence, F3/F}
and F,/F, are constant with magnitudes comparable
to the DNS values, no conclusion concerning the invari-
ants I; — I4 can be made as only a single X —wire probe
was used and the three relations describing Fi, F> and
F3, in terms of the four unknowns I; — I4 are, therefore,
indeterminate. Added to this dilemma is that DNS re-
sults show that F3/F; and Fa/F) can be constant (with
magnitudes in agreement with the current experimen-
tal results) while I; — I4 increase at different rates while
the experimental results of Zhou & Antonia (1998) also
show F3/F; (~4) and F»/F; (~ 2/3) to be constant
(with Gaussian magnitudes, in disagreement with the
current results) while I — I4 increase at the same rates.
Also shown in Figure 5 are (F3/Fy)’ (~ 3.98 + 0.31) and
(F»/F1) (~ 0.69 £ 0.04) , the prime indicating estima-
tion using forward differencing. The average values of
(F3/F.) and (F/F1)" are equal to that predicted by
Phan-Thien & Antonia (1994) and agree with the ex-
perimental results of Zhou & Antonia (1998), yet all the
current experiments could not resolve the Kolmogorov
dissipative scale and required the extrapolation tech-
nique described above to estimate F3/Fi and Fy/Fi.
This may explain the results of Tsinober et al. (1992)
and Zhou & Antonia (1998), i.e. the use of forward
differencing with a period equivalent to the sampling
frequency may result in moments close to Gaussian,
perhaps due to poor probe resolution and response.

1Siggia quoted the results for the four invariants I,
Iz, Is and 14.

2Boratav quotes the invariants of Siggia, for his sim-
ulation, to be I; ~ 2.5605, Iz ~ 4.2764, I ~"0.6121,
and Iy ~ 17.8838

3The values of T and M for these simulations were
calculated from the 4th — order structure functions i.e.
the same method used for experimental data.

4assuming <(8v/8z)2> =2 <(6u/6w)2>.

5Estimated from their Figure 1 and assuming
{(0v/0z)?) = 2((Ou/0x)?) .

6Estimated from Table V of Zhou and Speziale
(1998) and assuming <(6u/8y)2> =2 <(3u/8:c)2> .
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Figure 4. R» dependence of velocity derivative flat-
ness factors. o, Fou 005 O, Fayjos5 O, Fu. . X2
power-law fit (Press et al., 1994); the resulting power-
law exponents are shown. Uncertainty bars are not
shown for clarity.
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Figure 5. R) dependence of the moment ratios F3/F}
and F5/F. Uncertainty bars are not shown for clarity.
0O, a selection of X — wire velocity measurements of
the current study; v/, applying forward differences to
the same data; @ and — — , various DNS data [e.g.
S81; Boratav, 1997, Antonia et al., 1998a; Grossmann
et al., 1997; Chen et al., 1997; Jimenez et al., 1993]

CONCLUSIONS

Longitudinal and transverse velocity structures fucn-
tions have been measured in a variety of turbulent shear
flows over a reasonable Ry (40-1400) range. The trans-
verse inertial range scaling exponent has been defined
a number of different ways. The inequalities between
the longitudinal and any of the transverse inertial range
scaling exponents decrease with R, suggesting equality
at R ~ 5000. The flatness factors for both longitudi-
nal and transverse velocity derivatives have been esti-
mated from their equivalent nth -order increment mo-
ments in the limit of small . The R power-law depen-
dence for Fp, /05, Fav/a: and Fir are all, within exper-
imental uncertainty, approximately the same. The ra-
tio <(6v / 6z)4> / <(6u/ 8x)4> is approximately constant,
its magnitude (~ 5.52) comparable to that from DNS,



and not too dissimilar to that predicted by Pullin &
Saffmann (6).

ACKNOWLEDGEMENT

The support of the Australian Research Council is
gratefully acknowledged.

References

Anselmet, F., Gagne, Y., Hopfinger, E. J. and Anto-
nia, R. A. 1984. High-order velocity structure functions
in turbulent shear flows, J. Fluid Mech., 140, 63-89.

Arneodo, A., Baudet, C., Belin, F., Benzi, R. et
al. 1996. Structure functions in turbulence, in vari-
ous flow configurations, at Reynolds number between
30 and 5000, using extended self-similarity, Furophys.
Lett., 34, 411-416.

Antonia, R. A., Orlandi, P. and Pearson, B. R.
1998a. Pressure structure functions in isotropic turbu-
lence, Proc. 13" Australasian Fluid Mechanics Confer-
ence (eds. Thompson, M. C. & Hourigan, K.) 607-610,
Monash Uni., Melbourne.

Antonia, R. A. and Zhou, T. 1998. Reynolds num-
ber dependence of transverse scaling exponents in grid
turbulence, in U. Frisch (ed.) Advances in Turbulence
V11, Kluwer, 227-230.

Antonia, R. A., Zhou, T. and Zhu,. Y. 1998b. Three-
component vorticity measurements in a turbulent grid
flow, J. Fluid Mech., 374, 29-57.

Antonia, R. A. and Pearson, B. R. 1997. Scaling
exponents for turbulent velocity and temperature in-
crements, Europhys. Lett., 40, 123-128.

Antonia, R. A., Zhu, Y. and Shafi, H. S. 1996. Lat-
eral vorticity measurements in a turbulent wake, J.
Fluid Mech., 323, 173-200.

Benzi, R., Ciliberto, S., Baudet, C., Ruiz-Chavarria,
G. and Tripiccione, R. 1993. Extended self-similarity
in the dissipation range of fully developed turbulence,
FEurophys. Lett., 24, 4, 275-279

Boratav, O. N. 1997. Private communication.

Benedict, L. H. and Gould, R. D. 1996. Towards
better uncertainty estimates for turbulence statistics,
Expts. Fluids, 22, 129-136.

Chen, S., Sreenivasan, K. R., Nelkin, M. and Cao,
N. 1997. A refined similarity hypothesis for transverse
structure functions, Phys. Rev. Lett., 79, 2253-2256.

Dhruva, B., Tsuji, Y. and Sreenivasan, K. R. 1997.
Transverse structure functions in high-Reynolds num-
ber turbulence, Phys. Rev. E, 56, R4948-R4930.

Gotoh, T. and Rogallo, R. S. 1995. Statistics of pres-
sure and pressure gradient in homogeneous isotropic
turbulence, Proc. Summer Program, Center for Turbu-
lence Research, NASA Ames/Stanford University, 189-
205.

Grossmann, S., Lohse, D. and Reeh, A. 1997. Appli-
cation of extended self-similarity in turbulence, Phys.
Rev. E, 56, 3, 5473-5478.

Herweijer, J. A. and van de Water, W. 1995. Trans-
verse structure functions of turbulence, in R. Benzi
(ed.) Advances in Turbulence, Dordrecht, Kluwer, 210-
216.

96

Jimenez, J., Wray, A. A., Saffman, P. G. and Ro-
gallo, R. S. 1993. The Structure of Intense Vorticity in
Isotropic Turbulence, J. Fluid Mech., 255, 65-90.

Kerr, R. M. 1985. High-order derivative correlations
and the alignments of small-scale structures in isotropic
numerical turbulence, J. Fluid Mech., 153, 31-58.

Kahalerras, H., Malecot, Y. and Gagne, Y. 1996.
Transverse velocity structure functions in developed
turbulence, in S. Gavrilakis, L. Machiels, and P. A.
Monkewitz (eds.) Advances in Turbulence VI, Dor-
drecht, Kluwer, 235-238.

Kolmogorov, A. N. 1941. The local structure of
turbulence in an incompressible fluid for very large
Reynolds numbers, Dokl. Akad. Nauk. SSSR, 30, 299-
303.

Kolmogorov, A. N. 1962. A refinement of previous
hypotheses concerning the local structure of turbulence
in a viscous incompressible fluid at high Reynolds num-
ber, J. Fluid Mech., 13, 82-85.

Monin, A. S. and Yaglom, A. M. 1975. Statisti-
cal Fluid Mechanics: Mechanics of Turbulence, MIT
Press.

Pearson, B. R. 1999. Ezperiments on small-scale tur-
bulence. PhD thesis. Uni. Newcastle.

Phan-Thien, N. and Antonia, R. A. 1994. Isotropic
Cartesian tensors of arbitrary even orders and velocity
correlation functions. Phys. Fluids, 6, 3818-3822.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and
Flannery, B. P., 1994. Numerical recipes in Fortran: the
art of scientific computing. 2nd Ed. CUP.

Pullin, D. I. and Saffmann, P. G., 1993. On the
Lundgren-Townsend model of turbulent fine scales,
Phys. Fluids, 5, 126-145.

Sreenivasan, K. R. and Antonia, R. A. 1997. The
phenomenology of small-scale turbulence, Ann. Rev.
Fluid Mech., 29, 435-472.

Siggia, E. D. 1981. Invariants for the one point vor-
ticity and strain rate correlation functions, Phys. Flu-
ids, 24, 1934-1936.

Tabeling, P., Zocchi, G., Belin, F., Maurer, J. and
Willaime, H. 1996. Probability density functions, skew-
ness, and flatness in large Reynolds number turbulence,
Phys. Rev. E, 53, 1613-1621.

Tennekes, H. and Lumley, J. L. 1972. A First Course
in Turbulence, MIT Press.

Tsinober, A., Kit, E. and Dracos, T., 1992. Experi-
mental investigation of the field of velocity gradients in
turbulent flows, J. Fluid Mech., 242, 169-192.

Willaime, H., Belin, F. and Tabeling, P. 1998. Struc-
tures and transition in a high Reynolds number exper-
iment, Furo. J. of Mech. B-Fluids. 17, 4, 489-504.

Zhou, T. and Antonia, R. A. 1999. Reynolds number
dependence of the small scale structure of grid turbu-
lence, J. Fluid Mech. [submitted]

Zhou T., Pearson, B. R. and Antonia, R. A. 1999.
Comparison between temporal & spatial transverse ve-
locity increments in a turbulent shear flow. Submitted
to 8th Asian Conf. Fluid Mech.

Zhou, Y. and Speziale, C. G. 1998. Advances in the
fundamental aspects of turbulence: Energy transfer, in-
teracting scales, and self-preservation in isotropic decay,
ASME Appl. Mech. Rev., 51, 4, 267-301.



