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ABSTRACT

Results of modeling a turbulent flow around a two-dimen-
sional surface-placed obstacle of square cross-section have
been obtained. Possibilities of algebraic and differential sec-
ond-order models have been studied for the cases of a chan-
nel flow with a rib and turbulent boundary layer on a plate
with a line source of passive contaminant. Scalar diffusion
from the source in a flow behind a backward-facing step and
in the boundary layer with the obstacle has been calculated.

INTRODUCTION

Complex turbulent flows are accompanied by processes of
separation and reattachment because of sharp edges of bod-
ies situated in a flow. A local step to solve a general problem
of adequate description of such phenomena is to develop a
model for a flow with a surface-placed quadratic obstacle.

Recent years two-dimensional flows with sharp-edged
boundaries have been studied intensively both experimen-
tally and theoretically. The noticeable progress has been
achieved in description of a flow behind a backward-facing
step, e.g. in (Laurence et al., 1997; Craft, 1997) due to de-
tailed base of data of experiments (e.g. (Driver and Seeg-
miller, 1985)) and DNS (Le et al., 1997). A flow around an
obstacle is more serious test for experimental device, turbu-
lence model and numerical procedure owing to (caused by a
windward corner) sharper change of pressure, velocity and
larger increase of turbulent intensities in the thin layer on the
obstacle top. A number of computations mainly by the k-&
model has been realized for a single two-dimensional rib in
channels (e.g. (Durst and Rastogi, 1979; Benodekar et al.,
1985)), for a cube (e.g. (Murakami and Mochida, 1988)).
Despite an agreement with measured distributions of mean
velocity in the whole, some flow features (in particular, re-
covery after reattachment and behavior of turbulent intensi-
ties) were not predicted adequately. The present paper con-

tains results of computations of a flow with the obstacle
using Reynolds-stress models (RSM) of different closure
level and concentrates in description of flow characteristics
near the obstacle where recirculation zones are formed.
Diffusion of matter and heat is of primary importance in
industrial, chemical and atmospheric studies. As it is known,
a shortcoming of the gradient diffusion model for turbulent
fluxes of matter is that it is a local model. However, because
of its simplicity the K-theory remains an attractive approxi-
mation due to that it provides acceptably accurate results in a
number of applications. The present paper includes results of
concentration field prediction for flows with flat and sharp-
edged boundaries and line sources of passive contaminant.

VELOCITY FIELD IN A FLOW WITH AN OBSTACLE
The Reynolds-averaged Navier—Stokes equations are used
to compute the mean velocity and pressure fields in flows
with the quadratic cross-section obstacle of height H (in the
boundary layer of thickness § >> H and in the plane channel
of height 2H). The velocity and length scales of the bound-
ary layer flow are chosen as in the experiments of Murakami
and Mochida (1988) with the Reynolds number Rey = 7-10*
based on H and inflow velocity Uy at this height. Details of
boundary conditions, equations discretization, computation
procedure and results of computation by the k-& model of the
boundary layer with the obstacle are given by Kurbatskii and
Yakovenko (1996). The non-uniform meshes 1,2,3,4,5 have
the interval d chosen in successive runs to be equal to H/6,
H/12, H/24, H/48, H/96 near the rib. For the boundary layer,
computations show convergence of the recirculation regions
length with growth of H/d (Fig.1) and at d = H/48 give ex-
actly the measured size xz/H = 6.8 (Logan and Phataraphruk,
1989) of rear recirculation zone. Striving for convergence of
calculated profiles with grid refinement for a channel flow
can be seen in Fig.2 (meshes 2-5) and in Fig.5 (meshes 4,5).
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The channel flow has been chosen to test applicability of
turbulence models with the help of experiment data of Durst
and Rastogi (1979) (Fig.2-5). Differential model (DM) fol-
lowing to that of Launder et al. (1975) contains the transport
equation for the Reynolds stress tensor (u;u;). The non-linear
explicit algebraic model (AM) for {u;u;) reduced from DM
(Kurbatskii and Yakovenko, 1998) includes complex functi-
on G instead of the constant C,, in the isotropic coefficient of
eddy viscosity used in the linear Boussinesq model (BM).

BM gives negative non-physical values of the horizontal
component {u? of turbulence energy (Fig.3). The non-linear
algebraic model AMN for normal Reynolds stresses is able
to reproduce their anisotropy and to correct the shortcoming
of BM. The differential model DMN (transport equations for
@®), (v*) and linear gradient expression for (uv)) describes
behavior of {#?) in front of the obstacle, where convection
and diffusion processes are essential, better than AMN
(Fig.3, at x/H = -1). In the whole, DMN and AMN yield
close results which are shown only for DMN in Fig.3,4. The
complete DM model with the transport equations for all
components of the (u;u;) tensor gives the most exact predic-
tion of the turbulent intensity («*) (Fig.3) and mean velocity
field (Fig.4) in front of the obstacle, above it and in the re-
covery region behind it. DM also describes correctly a joint
of recirculation zones above the rib and behind it (Fig.5).

The effect of use of various difference schemes for con-
vection terms in the equations for calculation of flows
around sharp-edged obstacles at high Reynolds numbers has
been examined. In particular, the differences between the re-
sults of computation (Fig.5) with the different schemes (e.g.
first-order upwind scheme and QUICK) by the same model
at the refined grid are much less of discrepancies of sought
functions and streamlines calculated by various turbulence
models (Fig.3—5) but with the same convection scheme.

SCALAR DIFFUSION FROM LINE SOURCES

Modeling of turbulent diffusion of passive scalar in the
boundary layer from a line source of constant mass flux of
ammonia situated as in experiments of Poreh and Cermak
(1964) has been carried out. The mean concentration C(x,y)
of pollutant is defined from the transport equation

Uy ic—=i|:ﬂ.£—(ukc):| )]

A simple way of determining (uc) is the gradient K-model
(uyc)==Ap(6C1 6xy), Ar=vi/or with turbulent Prandtl
number o7 = 0.9. For the boundary layer we retain the term

of (1) with the vertical scalar flux (vc). The differential (vc)
equation (D-model) allowing for wall effect is formulated as
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where y = (4 + 21)/3, A and v are the molecular diffusivity
and viscosity, fo = exp{—(Re;/80)*}, Cs = 0.11, C)c = 3.0,
C’ic = 0.806. D-model using the rough BM approximation
(v?) = 2k/3 or more exact AMN value () ~ 0.46k produces
a worse prediction of near-source behavior of distributions
C(x,y) than K-model. The latter describes measured charac-
teristics fairly well (Fig.6-8) due to distributions of U, £, &,
(uv) reproduced by the modified k-& model (formulated
identically to that of Nagano and Tagawa (1990)) in good
agreement with the data of experiments (Klebanoff, 1955;
Gibson et al., 1984) and DNS (Spalart, 1988). The turbulent
diffusivity A (Fig.6) obtained from k and & varies with dis-
tance from a source according to Poreh and Cermak (1964).
For more accurate definition of (+?) in the near-wall layer,
the transport equations for the normal stresses with the pres-
sure-strain and dissipation terms approximations suggested
by Lai and So (1990) and reproduced correctly asymptotic
behavior of these terms in the near-wall layer are applied.
Use of BM for shear stress (uv) allows to derive in the local
balance approximation an explicit algebraic model (near-
wall correction of AMN) for the normal Reynolds stresses
describing data of experiments and DNS quite good (Fig.9).
Differential equations for normal stresses (near-wall correc-
tion of DMN) give similar results. D-model (1), (2) with this
correction predicts diffusion characteristics in the same good
agreement as that of K-model (Fig.7,8) and reproduces also
non-monotonic near-wall behavior of JC/ Jy (Fig.10) ob-

served by Poreh and Cermak (1964) at first measuring sec-
tion. K-model does not describe accurately this fine feature.
A flow behind a backward-facing step has been chosen
due to available measurements data of Quante and Enteridge
presented by Turfus (1988) for passive scalar diffusion in the
rear recirculation zone from sources at locations 1 and 2,
namely (x/H, y/H) = (0.08,0.8) and (2.4,0.4), where x = 0 is
the step coordinate, y = 0 is vertical coordinate of the bottom
at outlet, expansion ratio is ER = 1.111, Rey = 8-10*. The
flow rate Q of contaminant through a thin porous tube and
the diameter of this tube producing a line source were very
small. Therefore we can neglect (Turfus, 1988) by influence
of the source on the velocity fields characteristics which can
be taken from separate computation without a source real-
ized then by assignment of Q at locations of contaminant
emission. The same way has been used in calculation of the
plate boundary layer. K-model has been applied to obtain
concentration distributions behind the step. Use of more re-
fined models for the turbulent scalar fluxes (uc), (vc) is re-
stricted by lack of experiments data for unknown terms of
the transport (u,c) equation as well as for the fluxes itself.
There is no measured distributions of velocity fields char-
acteristics in (Turfus, 1988) for a flow with scalar sources
(such comparison is carried out in one more run (see Fig.11
for example) corresponding to close conditions of the ex-
periments of Driver and Seegmiller (1985) with ER = 1.125
and sufficiently high Reynolds number). In Fig.12,13 results
of scalar field computations of Turfus (1988) by the discrete
vortex model for defining trajectories of released particles
(models 1 and 2 use different values of effective eddy diffu-
sivity) are plotted together with the measurement and present
computation results. One can see that in the whole K-model



gives closer agreement with measurements data than that of
Turfus (1988) except near-step locations. Grid independence
has been checked in calculations at H/d = 50 (dash-dot lines)
and 100 (dash-dot-dot lines in Fig.13 at x/H = 1 and 2).
Results of computation by K-model of scalar propagation
from a source situated on the boundary layer ground up-
stream of an obstacle are presented in Fig.14. Velocity field
characteristics are taken from Kurbatskii and Yakovenko
(1996). It can be seen that influence of the sharp-edged ob-
stacle is already noticeable at distance x/H = -5 from it and
continues up to outflow (x/H = 20). For considered location
of the line source, effects of the rib consist in the substantial
(double) increase of the contaminant jet height, in the de-
crease of concentration level in recirculation zones behind
the obstacle and above leeward edge of it, in the resulting lift
up from the wall of position yp, Where C(x, Ymax) = Crax(¥)-

CONCLUSIONS

Results of modelling the two-dimensional flow around the
surface-placed obstacle of quadratic cross-section show that
the basic second-order model following to (Launder et al.,
1975) is able to improve prediction of the mean velocity
field near the rib and in the recovery region of the closed
channel flow and also to yield correct turbulent intensities
contrary to those obtained by more simple RSM.

D-model with the (vc) transport equation and near-wall
corrections of RSM as well as the simplified down-gradient
diffusion K-model with the low-Reynolds-number -¢ model
allow us to obtain fairly realistic predictions of structural
features of the concentration field of contaminant emitted
from a ground line source. It means in particular that de-
scription of atmosphere ability to diffuse pollutant in terms
of the eddy diffusivity which depends as in experiments on
vertical coordinate and on distance from the source is possi-
ble. D-model can give more exact reproduction of fine fea-
tures of diffusion field both near the source and near rigid
surfaces. However, formulation of an adequate second-order
model of scalar transfer for flows with sharp-edged obstacles
is restricted by lack of experiments data. K-model describes
the concentration field in the most part of a complex sepa-
rated flow and can be used as the first approximation for
solving environmental problems and further development of
more accurate models of turbulent heat and matter transfer.
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