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ABSTRACT
Experimental and numerical studies were conducted to
examine an idea of selecting a roll-cell pattern in 2D flow

among many possible stable states. Neural networks(NN)

were applied in order to recognize a certain flow pattern.
And Pyragas' delayed feedback control(DFB) theory is used
to overcome the instability caused by process time delay of
feedback loop. Notable approach of this study toward
active control of fluid flow is that suitable control rule and
control parameters can be chosen by way of judging the
flow pattern or flow state. To selecting a certain mode of
flow, particle image velocimetry(PIV) is utilized for
estimating flow field, then NN switches to the suitable
control rule for stabilizing the mode. 3D numerical
simulations were also carried out in order to find optimal
parameters of Pyrags control.

INTRODUCTION

Although many attempts of turbulence active control have
been made, most of those experimental studies experience
"out of control" state in the case of using large feedback gain.
In the present study, we assume this "out of control" state as
chaos, and resort to use chaos control theory to prevent the
flow field from falling into "out of control" state. We found
that Pyragas’ DFB was reasonably effective to stabilize a
control system which resonates because of feedback phase
delay. This technique is seemed to be essential for flow
control system, because our control algorithm and hardware

is rarely fast enough to cope with turbulence. However,
Pyragas' DFB has a drawback. If the targeting flow field
has multiple stable state, we have no way of knowing which
mode will be obtained as the final state. In other words,
Pyragas' DFB can stabilize the flow control system, but the
resulting stable mode may not be the mode we wanted. This
difficulty might be due to the fact that the control system is
not unconditionally stable but saddle point characteristics.
In order to stabilize the control system with saddle point
characteristics, sliding mode control theory is known to be
effective. This control method is distinguished by the control
parameter switching. We adopted the idea of this rule
switching to our flow control system for the purpose of
selecting a flow pattern among many stable modes.

EXPERIMENTAL APPARATUS AND PROCEDURES
Experiments were carried out for low Reynolds number
oil flow in a rectangle thin container, whose aspect ratio is
6:1:0.5. The container was made of plexiglass, the width is
300mm, the hight is 50mm and the depth is 25mm. The
diameter of a holes for the actuator jet is Smm. Four
independent pulsed jets were used as actuators in order to
keep the circulation of the roll<cell flow in container
constant. Each jet is controlled by own control system as
shown in Fig.1. Fluid flow was observed using PIV system,
and velocities were estimated for 60x10 points by moving
least square(MLS) method. Two progressivescan high speed
CCD cameras( Photoron Photocam 120) were used to
visualize four convection cells, therefore , each camera was
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set for two cells nearby. Each Photocam 120 was directly
connected to a PC( Intel Petium II 300MHz) by way of
using specialy designed framegraver borad. Frame rate used
for this experiment was 120 frames/sec, and resolution was
640x480 pixels. 180 successive images were directly stored
into RAM memory first, then manually stored into
removable media.
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Figure 1. Flow estimation algorithm .

NNs were trained to judge the flow pattern in advance or
off-line. Typical flow patters suitable for the curmrent
feedback control were taught to be recognized. The NN
activate the following control law only for the moment when
the flow field is similar to the one trained. Then, Pyragas'
DFB control theory was applied to each pulsed jet control
unit. Fig.2 is the block diagram of the Pyragas’ DFB control.
This method is designed to force the system to fall into a
limit cycle. Period of the limit cycle is a multiple of arbitrary
delay parameter t . If the period is long and amplitude of
the oscillation is small, the system can be considered as
stabilized. Finding the optimal value of t is not trivial
task, we conducted numerical simulations to investigate
optimal time delay and feedback gain.
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Figure 2. Block diagram of Pyragas’ DFB control

EXPERIMENTAL RESULTS

As shown in Fig.3, The convection cell patterns caused by
pulsed jets were labeled individually as R1,R2,R3 and R4
from left to right. For open loop control operation, the
system is designed to be stable. That is, we see stable four
convection cells driven by four constant velocity jets.
However, in the case of closed loop operation, we see
unstable oscillation due to improper feedback gain for
simple proportional feedback control. Our objective is to
stabilize the system by Pyragas® DFB control method. Fig.4
shows one example of successful implementation of the
current method. Dotted lines depict flow states estimated
by PIV or circulation of convection cells, which calculated
along each stream line of cell. Pyragas’ DFB control were
tumed on at 200 seconds after the moment unstable
oscillation starts. As shown in Fig.4, amplitude of flow
states became smaller after the control ON. And, deviation
amplitude of control input(solid line in Fig.4), which is
deviation value of actuator input, also smaller after the
control ON. Although the flow states could not be
perfectly stabilized to target reference value, we confirmed
that deviations of flow states and control inputs for all four
regions, namely R1 to R4, are decreased after Pyragas” DFB
applied. We concluded that Pyragas’ DFB method is
effective for actual active flow control system, which can
not avoid feedback lag time
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Figure 3. Four conviction cells are labeled as R1 to R4
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Figure 4. Experimental results for R1 and R2

NUMERICAL SIMULATION AND OPTIMAL PARAMETERS

Numerical simulations were carried out to
examine the current control method and to survey of
We checked that Pyragas’
DFB method successfully selects a certain mode of

optimal parameters.

flow pattern and makes the flow pattern stable by

experiments with PIV, even if the feedback delay is
not negligible. However, selecting the good value of
delay t and DFB gain is not easy because of noise caused
by flow estimator( or PIV system). And, optimal values for
Pyrags’ DFB is no theoretically well stated. So, we resorted
to numerical simulation for finding optimal values and
effective ranges of parameters.

Finite Difference method was used to solve 2D vorticity -
stream function. Numerical grid was 60x10, and first order
upwinding was applied to convection term. Poisson equation
for stream function was solved directly by Matlab .
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Figure 5. Numerical simulation results.

Fig.5 shows a result for which the control started
at 200 seconds after oscillation begun for region R1
and R2, and the same control started at 330 seconds.
We see the flow states of R1, R2 and R3 are
decreased soon after the control turned ON for R1
and R2. In other words, R3 region was stabilized
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when adjacent R2 was controlled. But R4 was
continued to be unstable until R4 was controlled
directly by its own Pyragas’ control units.
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figure 7. Cost function with respect to DFB gain
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The control results were summarized and examined
by cost function S%, which is defined as summation of
flow state deviation and control input deviation.

Fig.6 depicts how cost function varies with respect
to delay time t. We clearly see the optimal value
exists around 100 seconds. The optimal value does
not seems to change for all four cells. And, we
found that this optimal value roughly equals to the
artificial time delay, which is introduced to cause
instability. This implies that the optimal delay
time for Pyrags’ DFB is equal to lag time of the
feedback control system used for the flow control.
And, we found that multiples of this lag time tend to
have local minima of cost function.

Fig.7 shows how cost function changes with
respect to Pyragas’ DFB gain. There exists optimal
range of the gain value, but effecive range is rather
broad when it is compared to effects of delay time.

CONCLUSIONS

Experiments showed that the present control
method works reasonably well even for the system
which has state estimation noise caused by PIV error
and has non-negligible lag time in feedback system.

Parameter survey by Numerical simulations proved that
optimal values of delay time and DFB gain exist. And, lag
time of the feedback system seems to be an optimal value
for the present Pyragas’ DFB cotrol method.
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