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ABSTRACT

Transitions and instabilities of flow in a symmetric
channel with a suddenly expanded and contracted part
are investigated numerically by three different methods,
i.e. the time marching method for dynamical equations,
the SOR iterative method and finite element method for
steady state equations. Numerical results are analyzed
by using the bifurcation theory. Linear and weakly non-
linear stability theories are also applied to the flow. It
is known that the flow is steady and symmetric at low
Reynolds numbers, becomes asymmetric at a critical
Reynolds number, gets symmetric again at another crit-
ical Reynolds number and becomes oscillatory. Multi-
ple stable steady solutions are found in some cases and
the parameter range of existence of the multiple stable
solutions is obtained. Impinging free shear layer insta-
bilities are found to cause the flow oscillations, and the
mechanism of this instability is clarified.

INTRODUCTION

Two-dimensional flow with a suddenly expanded and
contracted part is a typical example which is not ho-
mogeneous in its flow direction. Traditional stability
theories for parallel flows can not be applied to such
a flow because of the inhomogeneity. So, the stability
of the flow has been investigated mainly by numerical
methods. It has been revealed that the transitions and
instabilities of the flow include rich physics.

Symmetric sudden expansion flow has been investi-
gated extensively. For instance, Durst, Melling and
Whitelaw (1974) and Cherdron, Durst and Whitelaw
(1978) measured velocity profiles in detail for the sym-
metric sudden expansion flow by L.D.V. and flow visu-
alization methods. It is found that the flow is symmet-
ric at low Reynolds numbers, but becomes asymmetric

at higher Reynolds numbers. The origin of the steady
asymmetric flows in a symmetric sudden expansion was
clarified by Fearn, Mullin and Cliffe (1990) by using
experimental and numerical techniques. They showed
that the asymmetry arises at a critical Reynolds num-
ber due to a pitchfork bifurcation and evaluated the
critical Reynolds number. It was also shown that this
pitchfork bifurcation becomes inevitably imperfect due
to a minimal asymmetry of the flow channel. They ob-
served time-dependent flows at higher Reynolds num-
bers and attributed the appearance of the unsteadiness
to three-dimensional effects. Alleborn, Nandakumar,
Raszillier and Durst (1997) investigated the flow pat-
tern in the same channel by numerical simulations, and
obtained a bifurcation diagram of the equilibrium solu-
tions. They investigated the instability of the equilib-
rium solutions by the linear stability theory.

The transitions and bifurcations of flow in a two-
dimensional symmetric channel with a suddenly ex-
panded and contracted part was investigated by
Mizushima, Yamaguchi and Okamoto (1996), which we
call MYO in short hereafter. They made numerical sim-
ulations for the flow and analyzed the numerical data
by the bifurcation theory. It was found that the flow
is steady and symmetric at low Reynolds numbers, be-
comes asymmetric at a critical Reynolds number Re.;
due to a symmetry breaking pitchfork bifurcation and
gets symmetric again at Rec2(> Rec1) due to another
pitchfork bifurcation. The symmetric low was shown
to become oscillatory in time at Recs due to a Hopf
bifurcation. They evaluated the critical values of Re.;,
Re.; and Re.s, and obtained a transition diagram of the
flow. However, the bifurcation diagrams obtained were
incomplete because the diagrams included unexpected
discontinuous lines in place of presumably smooth lines.

Transitions and instabilities of flow in a symmetric
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Figure 1. Channel geometry and coordinates.

channel with a suddenly expanded and contracted part
are investigated numerically by three different meth-
ods, i.e. the time marching method for dynamical equa-
tions, the SOR iterative method and the finite element
method for steady state equations in this paper. This
work is an extension of MYO. We focus our attention to
the multiple stable steady solutions of the flow at rel-
atively low Reynolds numbers and the impinging free
shear layer instability when the flow becomes periodic
in time. Linear and weakly nonlinear stability theo-
ries are also applied to the flow and coefficients of an
amplitude equation are evaluated numerically for the
symmetry breaking pitchfork bifurcation at Rec;.

FORMULATION AND NUMERICAL METHODS

Formulation

We consider a flow in a symmetric channel with a
suddenly expanded and contracted part (Fig. 1). Flow
enters from the inlet AB of width h into the suddenly
expanded part DEJK through the sudden expansion
LC, leaves it through the sudden contraction IF and
goes out from the outlet HG of width k. The expansion
ratio F = DK/LC is fixed as E = 3 in the present study.
The aspect ratio A is defined as A = L/3h = DE/KD
where L is the length of the suddenly expanded part.

The flow is assumed two-dimensional and incom-
pressible. The governing equations for the velocity
u = (u,v) and the pressure p, i. e. the Navier-Stokes
equation and the continuity equation, are written in a
nondimensional form as

—(;;—ltl +u-V)u=-Vp+ év*’u, (1)
V-u=0, (2)
where all the variables are normalized by the maxi-
mum inlet velocity Umax and the half channel width
h/2 of the inlet channel. The Reynolds number is de-
fined as Re = Unaxh/2v. As the flow is assumed two-
dimensional, the stream function ¥(z,y,t) can be in-
troduced. So, we use the vorticity w(z,y,t) and the
stream function ¥ (z,y,t) in our formulation. The vor-
ticity transport and poisson equations are written as

o, ovis dwau_ 1 B P
ot Ay odr Oxdy Re 8z2 Oy’
0% %
w-—-—('a—x—2'+—a?). (4)
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The boundary condition at AB is assumed as a fully
developed plane Poiseuille flow so that,
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The outlet condition at HG is given as

) w
% =" =0 (©)

when the resultant flow is steady. On the other hand,
in the case where the flow becomes periodic in time,
the Sommerfeld radiation condition is adopted at the
outlet, which is expressed as,

oy . 0y w . Ow
ot 8 =% B T

where c is a phase velocity and the velocity of u at each
position on HG is simply used for the value of ¢ in the
present study.

The boundary conditions on all the walls are non-slip
condition, so the values of the stream function on the
walls are determined as

=0, ™

¥ =1, =0 on BCDEFG,
¥ =1 =4/3 on HIJKLA,

% =0, % =0 on BCDEFG and HIJKLA, (8)
Oz Oy

because the volumetric flow rate in each cross section
of the channel is constant.

Time marching method

In the time marching method, an equally spaced
mesh system with Az = Ay = 0.1 is used. The vor-
ticity transport equation (3) is solved by the explicit
Euler method with the first order accuracy in time to-
gether with the 2nd order accuracy of central finite dif-
ference in space. The time increment At is chosen as
At = 0.001 or At = 0.0005. The Poisson equation (4)
is descretized by the 2nd order central finite difference
and solved by the SOR method, where the relaxation
factor e is kept as e = 1.5. The convergence of the SOR
method is determined when the maximum relative error
reaches 1075 and the steady flow state is determined
when the stream function becomes time independent
and the maximum relative error reaches 10710,

SOR iterative method

Both the steady state vorticity transport equation
obtained by putting 8/t = 0 in eq. (3) and the Poisson
equation (4) are solved by the SOR iterative method.
Spatial derivatives are approximated by the fourth or-
der finite differences. The relaxation factor € for the
SOR method is determined in the range 0.7 < ¢ < 1.0
by considering aspect ratios and Reynolds numbers.




The convergence of the SOR method is determined
when the maximum relative error reaches 1071°. In
order to calculate unstable steady symmetric solutions,
the SOR method is utilized under the symmetry condi-
tion along the center line of the channel.

Finite element method

The computational domain is divided by triangu-
lar elements in the finite element method. Primitive
variables (u,v) and p are used for the numerical cal-
culations. The velocities v and v are approximated
by quadratic-polynomial expressions using six nodes
in each element and the pressure is approximated by
linear-functipn expressions using three nodes. These
expressions for u, v and p are substituted in the steady
state Navie-Stokes equation (1) after putting 8/8t = 0,
and the continuity equation (2). The descretized equa-
tions are obtained by using Galerkin’s method and
are solved numerically by using the Newton-Raphson
method. The node number used is 4163 and the ele-
ment number is 1992. The convergence of the Newton-
Raphson method is determined when the maximum rel-
ative error reaches 1071°.

Linear stability of steady state solutions

For the linear stability analysis, we express the
steady state solution by w = @(x,y) and ¥ = P(z,y)
and add a disturbance w' (z,y,t) and i (z,y,t) to them.
Then the vorticity and the stream function are writ-
tenasw = @+ ® and =1+ 1//. By substituting
the expressions for w and % into egs. (3) and (4), ne-
glecting the nonlinear terms of the disturbances and
assuming the time dependence of the disturbance as
W' = &(z,y) exp(At) and ¢’ = 9(z,y) exp(At), we ob-
tain the linear stability equations as

POy Opom , 0PIy B dw

Ao =5 oz Byoz  dcoy  owdy
1 ,0% 0%
R_e(W—FEP)’ (9)
. 0% 3%
w——(a—ﬁ“i"gy—z), (10)

where A is the linear growth rate of the disturbance.
The equations (10) and (11) are solved by the SOR
iterative method and the value A is evaluated. The
steady state solution is judged as stable or unstable
according to the sign of the real part of A.

Weakly nonlinear stability
The nonlinear behavior of the solution near the criti-
cal state of the symmetry breaking pitchfork bifurcation
is analyzed by the weakly nonlinear stability theory.
The standard procedure of the weakly nonlinear sta-
bility theory leads to an amplitude equation for A(t)
a’S’

% = oA+ M 4%, (11)

where A(t) is the amplitude of the disturbance and is
identified as the magnitude of v at P; = (0.4h,0) in
Fig. 1.

It is noted here that a relation A = A\o(1/Re.—1/Re)
holds near the critical state of the pitchfork bifurcation.
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Figure 2. Bifurcation diagram. A = 7/3. (a) Velocity
v1 at (z,y) = (0.8,0.0). (b) Amplitude of oscillation a.

NUMERICAL METHODS

Transitions of the flow

Case of A = 7/3. The transitions of flow for the case
of A = 7/3 were investigated by Mizushima, Yam-
aguchi and Okamoto (MYO), so their results are re-
viewed briefly. The bifurcation diagrams for A = 7/3
are reproduced in Figs. 2(a) and 2(b), where the veloc-
ity vy in the y-direction at P1(z, y) = (0.4h, 0) is taken
as a representative value manifesting the magnitude of
the asymmetry and the amplitude a of the velocity v
at (z,y) = (8.5h,0) respectively. The solid and dashed
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lines indicate the stable and unstable solutions in these
figures.

For the Reynolds numbers Re smaller than Re.;(=
47.7), there is only one stable steady solution with
v1 =0, i. e. the flow is symmetric as seen in Fig. 2(a).
At Re; the line of v; branches into three, which shows
that there appear two stable asymmetric solutions while
the symmetric solution becomes unstable. The two sta-
ble and one unstable solutions join into one stable so-
lution at Rec2(= 65.2), which shows another pitchfork
bifurcation.

The steady state solution is unique for Rec2 < Re <
Re.3 as seen from Fig. 2(b), which is a stable symmetric
flow. The symmetric flow becomes unstable, and an
oscillatory flow appears at Re.3(= 843) due to the Hopf
bifurcation.

Linear stability of the symmetric steady flow has not
been confirmed by MYO. We have evaluated the lin-
ear growth rate of the symmetric flow in the range of
40 < Re < 70 by solving egs. (9) and (10) with the
SOR method. The linear growth rate A is depicted in
Fig. 3. It is needless to say that the critical Reynolds
numbers Rec; and Re.; agree with the values obtained
by the bifurcation analysis of the numerical data. It is
seen that the symmetric flow is unstable in the range
of Reci < Re < Rec2 and that it is stable out of the
range.

The weakly nonlinear stability theory is applied near
the pitchfork bifurcation point at Reci;. The coeffi-
cients of the amplitude equation (11) are evaluated by
the SOR iterative method as Ao = 1.113 and A\; =
—6.804. The representative velocity v; is calculated
from eq. (11) and is shown in Fig. 4 together with the
results of numerical results from the full nonlinear equa-
tions.
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Figure 3. Linear growth rate \. A =7/3.

Case of A= 8/3. The transition diagrams for A =
8/3 obtained by MYO were incomplete because the so-
lution lines for v; had discontinuities in place of pre-
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Figure 4. Bifurcation diagram obtained by the weakly

nonlinear stability theory (eq. (11)).
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Figure 5. Bifurcation diagram. A = 8/3.

sumably continuous lines. MYO speculated that the
discontinuities occur because of the inverse pitchfork
bifurcation. We confirm their speculation by utilizing
the finite element method.

We have calculated the steady solutions for A = 8/3
in detail. The bifurcation diagram obtained is depicted
in Fig. 5. The solid and dashed lines indicate the stable
and unstable steady state solutions respectively. The
symmetric unstable solutions with v; = 0 were obtained
by the SOR method with the finite difference approxi-
mation under the symmetry condition along the center
line, whereas unstable solutions with v; # 0 were ob-
tained by the finite element method.

The first symmetry breaking pitchfork bifurcation
occurs at A in Fig. 5, where the symmetric solution
becomes unstable. The bifurcated solutions are indi-
cated by ABCE and AB'C'E. The asymmetric solution
ABC and AB'C’ are stable, but make saddle node bi-
furcations at C or C' (Re = Rel,) respectively. The



Figure 6. Flow fields. Re = 110.(a) Stable symmetric
flow. (b) Stable asymmetric flow. (c) Unstable
asymmetric flow.

asymmetric solutions CE and C'E are unstable and the
symmetric solution ED is stable. So, there are three
stable solutions and two unstable solutions in the range
of Reczs < Re < Rel,.

The critical values of the pitchfork and saddle node
bifurcations are evaluated numerically as Rec.; = 41.0,
Recs = 107 and Re, = 112. The critical values of Rec;
and Re., are in good agreement with those by MYO,
while Re.2 had not been obtained by MYO.

We can easily imagine from Fig. 5 that there occurs
a hysteresis phenomenon. If the Reynolds number is
increased from a small value, the symmetric solution
bifurcates at A. The bifurcated solution takes a route
indicated by ABCD or ABC'D’. This shows that the
asymmetric flow indicated by ABC (or ABC') make a
transition from C (or C') to D at Rel,. On the other
hand, if the Reynolds number is decreased from a large
value, the symmetric flow become unstable at E and
make a transition to B at Re = Re.2 and take a route
indicated by DEBA (or DEB’'A). Thus the hysteresis
phenomenon occurs in the range of Recx < Re < Rel,.

The flow patterns of the two stable asymmetric solu-
tions, a stable symmetric solution and unstable asym-
metric solutions at Re = 110, which lies between Re.2
and Re.,, are shown in Figs. 6(a) - (c). There are
two large recirculation vortices which extend in the full
length of the expanded part in the stable symmetric
flow (Fig. 6(a)). The stable asymmetric flow (Fig. 6(b))
bends much more than the unstable asymmetric flow
(Fig. 6(c)) as easily understood also from Fig. 5.

Transition diagram

1200

Periodic flow

Re 1000

800

600k Steady symmetric flow

Dual solutions

400[
Steady
2001 asymmetric
flow
1 1 1 1 (sJ
0 10 20 30 40 ' oo
A

Figure 7. Transition diagram. Filled circles: first
symmetry breaking pitchfork bifurcation, Re.;. Open
circles: second symmetry recovering pitchfork
bifurcation, Rec2. Open squares: saddle node
bifurcation, Re.,. Filled squares: Hopf bifurcation,
Recg.

We made numerical calculations for various aspect
ratios A and obtained a transition diagram as summa-
rized in Fig. 7. For A < A.(= 2.3), the flow does not
experience any pitchfork bifurcations and makes a tran-
sition from a steady symmetric flow to an oscillatory
flow at Recs (line with filled squares). For A > A,, the
flow undergoes a transition from a steady symmetric
flow to a steady asymmetric flow at Rec: (the line with
filled circles) due to the symmetry breaking pitchfork
bifurcation, and becomes symmetric again at Re., (line
with open squares). There are multiple stable solutions
in the range of Recs < Re < Re.,, which is the region
between lines with open circles and filled circles.

The steady flow makes a transition from the steady
symmetric flow to an oscillatory flow due to the Hopf
bifurcation at Recs (line with filled squares). The neu-
tral stability line with filled square for Rec.3 seems to
consist of two distinct curves which intersect with each
other at A ~ 2.1, which suggests an exchange of the
instability modes.

The Strouhal number St(= Lof/3hUmax), where f
is the frequency in the time periodic flow, is evaluated
from the numerical data and is depicted in Fig. 8. The
Strouhal number also changes stepwise with a contin-
uous change of the aspect ratio A. The jump of St at
A ~ 2.1 corresponds to that of Recs in Fig. 7. This
also remind us an exchange of instability modes. The
instability where St changes stepwise with a continuous
change of a parameter is characteristic of impinging free
shear layer instability (IFSLI). The instability (IFSLI)
occurs when a jet like stream impinges on a object (see
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Rockwell and Naudascher, 1979).

Impinging free shear layer instability

The jumps of values of St and Rec3 remind us an
exchange of the instability modes, which we confirm
by showing the flow patterns of the disturbances. The
disturbance can be defined by a difference of the time
periodic flow from the unstable symmetric flow at the
same Reynolds number.

The flow patterns calculated are shown in Fig. 9(a)-
9(d). Figure 9(a) shows the time periodic flow at
Re = 1150 for A = 4/3. We have calculated an unsta-
ble symmetric solution at the same Reynolds number
by assuming the symmetry. The disturbance is calcu-
lated by subtracting the symmetric solution from the
time periodic solution as depicted in Fig 9(b). The dis-
turbance for A = 7/3 calculated in a similar manner is
depicted in Fig. 9(d).

The disturbance for A = 4/3 has two sets of vortices,
whereas the disturbance for A = 7/3 consists of three
sets of vortices. This difference shows the exchange
of the instability modes, so the mechanism of the dis-
continuous change of St in IFSLI is shown due to the
exchange of the instability modes.
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