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ABSTRACT

The present investigation deals with the transition to
turbulence and the behaviour of the turbulent flow in
spherical gaps. Different initial and steady or time-
dependent boundary conditions result in different ways of
the transition from laminar to turbulent flows. The
dynamical behaviour is investigated by the power spectra
of the local wall shear stress at the outer sphere. The
structure of the secondary instabilities is observed by flow
visualization. The experimentally observed direct
transition to turbulence is analysed analytically using
similarity considerations.

INTRODUCTION

Turbulence is important in nature and technology for
many reasons. The physical behaviour is investigated by
analysing the laminar-turbulent transition and also the
fully developed turbulent flows. Surveys are given by
Eppler and Fasel (1980), Swinney and Gollub (1981),
Barenblatt et.al. (1983), Tatsumi (1984) and Kozlov
(1985). In this work the dynamical behaviour of spherical
gap flows with and without Taylor vortices is investigated
for a small gap width. The dynamical instabilities during
the laminar-turbulent transition are analyzed by spectral
measurements and visualization of the flow structure. By a
quasistatic increase of the Reynolds number the three-
dimensional boundary layer flow becomes unstable with
respect to time-dependent shear waves, located near the
outer sphere. Depending on the basic flow, steady Stuart
vortices are also observed near the poles. The
superposition of the Stuart vortices and shear waves with
increasing Reynolds number leads to a stochastic motion,
which occupy at least the whole flow field. A sudden start
of the inner sphere to a high supercritical Reynolds
number shows a direct onset of turbulence in which the
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turbulence front spreads from the equator toward the poles
in both hemispheres. This paper continues the
investigations of Bithler and Zierep (1985) and Biihler
and Zierep (1987).

BASIC FLOW IN SPHERICAL GAPS

The experimental set up consist of a rotating inner
sphere surrounded by a transparent outer sphere at rest.
Silicon oil of a kinematic viscosity v = 5 10 m?%s is used
as working fluid. Small aluminium flakes makes the flow
structure visible. The wall shear stress is measured with
hot film sensors at different meridional positions on the
outer sphere. The spherical gap flow depends on the

following nondimensional parameters, the Reynolds
number and the dimensionless gap width:
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The basic flow between two concentric spheres is
always three-dimensional. For supercritical Reynolds
numbers this flow becomes non-unique. Different modes
of flow with and without Taylor vortices exist side by side
in the supercritical regime. This fact was first observed by
Sawatzki and Zierep (1970) and further studied by
Wimmer (1976). Very small gap sizes are investigated by
Nakabayashi (1983). A theoretical work on the nonlinear
bifurcation was done by Tuckerman (1983) and Marcus
and Tuckerman (1987). A comprehensive description of
theoretical and experimental investigations is given in
Bithler (1985) and Biihler (1990). Investigations for larger
gap widths were done by Egbers (1994) and Wulf (1997).



Figure 1 shows the spatial structure of the steady
supercritical flow states. They are called Mode I without
vortices, Mode III with two Taylor vortices and Mode IV
with four Taylor vortices. The structure is plotted with
lines of constant streamfunction in the meridional plane.

TIME DEPENDENT INSTABILITIES

These different supercritical flow states are the initial
states to observe the laminar-turbulent transition with
time-dependent instabilities by increasing the Reynolds
number. Figure 2 shows the existence ranges of steady and
time-dependent flow. The solid lines represent laminar
flows while the dashed lines correspond to turbulent flow.
The instabilities are strongly connected to the multiple
modes of flow with different local velocity distributions.
The numerical solutions (Bithler, 1985) show the boundary
layer character of the flows. For higher Reynolds numbers
the boundary layers near the inner and outer sphere are
separated. It can be shown by analytical investigations,
that the thickness of the outer boundary layer is twice of
that of the inner one. Figure 3 gives a principle sketch of
the flow structure between the two spherical surfaces. The
two boundary layers are connected by a nearly rigid body
rotation.

MODE | WITHOUT VORTICES

A rapidly acceleration of the inner sphere from rest to
a supercritical Reynolds number supress the onset of
Taylor vortices near the equator. The existence range for
this mode is calculated numerically (Bithler, 1990). The
three-dimensional shear waves appear in form of spirals
from the poles to the equator for Reynolds numbers Re >
5400. The structure of the shear waves is visualized in
Figure 4. The orientation of the waves are perpendicular to
the flow near the outer sphere from the equator to the
poles. The interaction of these shear waves give rise to a
wavy interface at the equator which moves in
circumferential direction with the velocity vy. Figure 3
gives a sketch of the spatial structure of these time
dependent shear waves. The structure in the meridional
plane is visualized by a light cut method. The streaklines
in figure 3 on the right exhibit the structure of the
boundary layer instability near the outer sphere. The
circumferential velocity vy of the shear waves depends for
a given gap width only on the Reynolds number. The
waviness of the equatorial plane has a discrete wave
length A. The dimensionless frequency is therefore direct
proportional to the discrete wave number n. The
dependence of the frequency on the Reynolds number for
different wave numbers are accompanied by hysteresis
effects. Characteristic time-dependent signals and the
corresponding power spectras of the local wall shear stress
are given in Bihler and Zierep (1987). Increasing the
Reynolds number further, Stuart vortices are formed near
the poles, oriented perpendicular to the shear waves. The
interaction between the shear waves and the Stuart
vortices leads to a stochastic motion with coherent

972

structures as shown in figure 4 on the right. For Reynolds
numbers Re > 8000, the whole flow becomes turbulent.
The waviness of the equatorial plane is still concerved for
even higher Reynolds numbers.

MODE Iil WITH TWO VORTICES

This supercritical mode with two vortices near the
equator is shown in figure 5. The flow becomes first
unstable by Stuart vortices near the poles oriented in the
direction of the flow near the outer sphere for Reynolds
numbers Re > 6500. For even higher Reynolds numbers
Re > 7800 a secondary instability occurs inside the Taylor
vortices near the equatorial region. Their frequency is
clearly obtained in the power spectra. With increasing
Reynolds number shear waves are developed. Their
interaction with the Stuart vortices leads to a stochastic
motion as can be seen in figure 5 on the right. The Taylor
vortices are still conserved within the turbulent motion up
to a Reynolds number around 11000 < Re < 14000 , at
which the vortices disappear. This is then a transition from
mode IIT into mode I without vortices.

MODE IV WITH FOUR VORTICES

This flow state with four Taylor vortices becomes
unstable in the low Reynolds number range 1200 < Re <
2200 with respect to the time-dependent wavy mode. The
existence range for the wavy mode is marked by black
points in figure 2. After that range a restabilization occurs
up to Reynolds numbers Re = 4900. Shear waves are then
formed near the poles as can be clearly seen in figure 6.
With increasing Reynolds number the interaction between
shear waves and Stuart vortices takes place, so that the
flow becomes stochastic as can be seen in figure 6 on the
right. When the stochastic motion reaches the Taylor
vortices, two of them disappear. With a further increase of
the Reynolds number the Taylor vortices completely
disappear and we have the supercritical turbulent flow
without vortices.

DIRECT TRANSITION TO TURBULENCE

A sudden start of the inner sphere from rest to a high
supercritical Reynolds number Re > 8000 leads to a direct
transition to turbulence. The turbulence first appears at the
equator and then the transition fronts in both hemispheres
are spreading toward the poles with increasing time.
Figure 7 shows the time- dependent process for different
times. By the high acceleration of the inner sphere a radial
diffusion process takes place. After a characteristic time t;
a sudden transition from laminar to turbulent motion
occurs as it is shown in figure 7. A analytic solution for the
position of the onset of the direct transition as function of
time are obtained applying the analogy to the Rayleigh-
Stokes flat plate problem. The velocity in circumferential
direction decreases towards the poles. Therefore the radial
diffusion process depends on the meridional coordinate.
For the short time limit t > t, we end up with the



following analytic expression for the position of the
turbulence front:

t
cos9" T =1, =T
1

The meridional coordinate 8" is measured from the
equator and indicates the place of the spreading turbulence
front. A comparison between theory and experiment is
given in figure 8. The experimental data are for final
Reynolds numbers 8000 < Re < 40000. Within the limit of
short times there is a good agreement between theory and
experiment.

CONCLUSION

The different routes from laminar to turbulent
spherical gap flows have been investigated both
experimentally and theoretically. The time-dependent
shear wave instabilities have an important influence in
these transition processes especially in the interaction with
the Stuart vortices. The analysis results in an analytic
expression for the position of the spreading turbulence
front. The combination of experimental and theoretical
investigations gives a deeper insight into the process of
laminar-turbulent transition. The disappearence of the
Taylor vortices at high Reynolds numbers indicates the
characteristic difference between cylindrical and spherical
Couette flow in the physical behaviour during the laminar
turbulent transition and the final turbulent flow.
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Figure 1. Supercritical non-unique spherical gap flows, different modes at the Reynolds number Re = 2600.
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Figure 3. Principle sketch of the spherical gap flow with shear waves (left) and streaklines in the meridional plane (right).
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Figure 6. Mode IV with four Taylor vortices and superimposed shear waves Re = 5900 (left) and Re = 6200 (right).
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Figure 7. Spreading turbulence front after sudden-start of the inner sphere at different times, Re = 24600.
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Figure 8. Time-dependent position of the turbulence front, comparison between theory and experiment.
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