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ABSTRACT

The turbulent channel flow with streamwise rota-
tion has been investigated by means of different ana-
lytical, numerical, and modeling approaches. Lie group
analysis of the two-point correlation equations led to
linear scaling laws for the streamwise mean velocity. In
addition it was found that a cross flow in spanwise direc-
tion is induced, which may also exhibit a linear region.
It is shown that all six components of the Reynolds
stress tensor are non-zero. In addition certain symme-
tries about the centerline have been established for all
flow quantities. All the latter findings of the analysis
have been very well verified by means of direct numeri-
cal calculations. The flow has also been tackled by LES
and second-moment closure models. The dynamic LES
model captured most of the theoretical and DNS find-
ings quantitatively. The second-moment closure model
was able to capture most of the basic trends, but any
quantitative agreement could not be achieved.

INTRODUCTION

During the development of the symmetry theory in
Oberlack (1997), it was noticed that there may be one
additional turbulent scaling law which was not men-
tioned since no experimental or DNS data were avail-
able. This is the turbulent channel flow rotating about
the streamwise direction (see Fig. 1).

The classical rotating turbulent channel flow con-
siders rotation about the spanwise direction (z3) (John-
ston et al. 1972). In this flow the mean stream lines fol-
low plane spirals. In contrast to this, mean stream lines
of the present flow exhibit corkscrew-like spirals. How-
ever, the most obvious difference between the two cases
may be the induction of a cross flow in xs-direction.
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FIGURE 1. Sketch of the flow geometry of a turbulent
channel flow with streamwise rotation.

ANALYSIS

The basis for the flow analysis the present section is
the mean momentum equation and the two-point veloc-
ity correlation equation in a rotating frame of reference,
which are given respectively by
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s, P, Uiy, v, and  are respectively the mean veloc-

ity, the mean pressure, the Reynolds stress tensor, the
dynamic viscosity, and the rotation rate in z;-direction.
The two-point velocity correlation tensor function and
the two-point pressure-velocity in Eq. (4) are respec-
tively defined as

Rij(z,7;t) = ui(z, t) uj (@@, ¢) |
P (=, r;t) = p(ee, t) u; (2, ) (5)

where u; and p are the fluctuating quantities. The other
tensors are defined accordingly. For the present case all
statistical quantities only depend on the wall-normal
coordinate z2 and the correlation coordinate r» = &) —
x. The double two-point correlation tensor R;; con-
verges to the Reynolds stress tensor @;u; in the limit of
zero separation |r| = 0.

For high Reynolds number flows, viscous transport
terms are only significant in the very vicinity of the wall.
From Eqg. (1) the usual linear turbulent shear stress pro-
file for w1uz may be derived. Since no pressure-gradient
in the spanwise (z3) direction is present, it can be de-
duced from Eq. (3) that the shear stress Tzus is uniform.
Equation (2) only determines the pressure-gradient in
wall-normal direction and has no influence on the mean
velocity.

Time-scale analysis
The characteristic time scales of the rotation rate
the viscous sublayer and the universal logarithmic re-
gion are respectively defined as
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where u, is the “friction velocity” defined as u, =

t

o . .
\/ v 3?; wall’ For sufficiently high Reynolds number, ¢,
is a fixed small quantity while ¢,z increases with the
distance from the wall. Taking the ratio of the latter
flow time scales with the rotation time scale we respec-

tively obtain
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where Re = hu,/2v and Ro = Q1h/u-.

Assuming Ro of the order O(1) and supposing Re
to be large, the time scale ratio 71 is a small quantity.
Hence it is concluded that the rotation only perturbs
the viscous sublayer, and a significant change may not
be observed.

Considering the same order of magnitude assump-
tions for Ro as above, it can be concluded that T> may
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only be a small parameter for small y/h. This is the flow
region close to the wall and next to the viscous sublayer.
In contrast, if y/h is of order O(1), T may become an
order O(1) parameter. Consequently, we conclude that
this is the flow region which is affected most by the
system rotation as will be shown subsequently.

Reflection symmetries about the centerline

The following is observed in a variety of differ-
ent channel type of flows such as the usual turbulent
Poiseuille and the turbulent Couette flow: If the corre-
sponding equations and boundary conditions admit a
certain reflection symmetry about the centerline, this
is also verified for all statistical quantities.

For the present problem the system (1)-(4) admits
a reflection symmetry where the variables are respec-
tively separated as independent variables, mean quan-
tities, and statistical quantities
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The latter reflection symmetries can be generalized
as such that any other statistical quantity can be deter-
mined from the fluctuation quantities according to the
transformation for the fluctuations

p=p . (13)

For example, the transformation (12) can be determined
from (13) as a dyadic product. Employing (9)-(13) and
the corresponding quantities in the statistical transport
equations do not change its form written in the “7”-
quantities.

From (11) it can be determined that @; is symmet-
ric about the centerline and @3 is antisymmetric about
the centerline. The consequences for the stresses are
such that all normal stresses and uzuz are symmetric
about the centerline while wiuz and Wius are antisym-
metric about the centerline.

al:uly ﬂ2=—U2, ﬂ3=—u37

Lie group analysis of the correlation equation

In the following analysis it will be assumed that the
Reynolds number tends to infinity so that the viscous
terms in the two-point correlation equation (4) may be
neglected. The basis for this assumption is the fact that,
to leading order only, the large scales determine the
mean velocity. Viscosity only affects the small scales of
the order O(n) where 7 is the Kolmogorov length scale.
Hence neglecting viscosity is only valid for |r| > 7.
If |r| < 7, the last term of the third line in Eq. (4)
corresponds to the dissipation and cannot be neglected.

The general purpose of the present analysis is to
achieve self-similarity (or reduction) of the two-point
correlation equation and to find analytical solutions for



the mean velocity. The first step to accomplish this ob-
jective is to find continuous symmetry transformations
(Lie groups). In fact, this is analogous to the analysis
presented in the previous subsection where reflection
symmetries have been investigated which do not alter
the equations. The method to find the desired continu-
ous groups of transformations is called Lie group analy-
sis (see e.g. Bluman and Kumei 1989). In the present
subsection only a heuristic approach will be presented
while some more mathematical details on group meth-
ods are presented in Appendix B in Oberlack (1997).

Self-similarity or reduction is always associated with
the decrease of the number of independent variables. It
is important to note that the independent variables are
not necessarily restricted to the usual variables such as
x and t. Instead any parameter in the equation under
investigation may be considered as independent vari-
able.

Hence, in the first step a reduction will be achieved
by rewriting the two-point correlation equation as such
that ; is absorbed into all the remaining indepen-
dent and dependent variables. The most general form
of transformation allowing this reduction is

T; = ji'y(ﬂl), Ty = Fi"y(Ql), u; = ’L:Li’Y(Ql)Qla

Ry = Ryy(20)*QF , Pu, = puy(0)°Q ,  (14)
where the new variables are denoted by tilde, and v(€21)
is an arbitrary function of ;. After employing (14) and
imposing the high Reynolds number limit in (4), the
two-point correlation equations have a similar form as
(4) but the viscous term has disappeared and Q; is no
longer contained in the equation.

Obviously the number of elements in the vector
of independent variables [r1,72, 73, Z2, 1] has been re-
duced by one. From the Lie group approach in Ober-
lack (1997) it follows that the latter equation admits a
further similarity reduction only for certain mean ve-
locities which obey the equations
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where a1, a2, ¢1 and cs are constants. The correspond-
ing similarity variables for the correlation functions are
to be obtained from the invariant surface condition

diy drs drs
aif1  aifa  aifs
dz2 dR;; dpa,
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where the constants of integration are taken as the new
variables.

Each of the parameters a1 and a2 have a distinct
physical meaning. The parameter a; corresponds to the
scaling group; i.e. Eq. (4) admits a transformation of the
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form

(18)
(19)
which does not alter the functional form of the equa-
tion written in the new coordinates. The parameter as
corresponds to the translation group which conform to

the fact that (4) is autonomous with respect to Z2. As
a result (4) is invariant under the transformation
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where C; and C3 are integration constants. If the trans-
formation (14) to the original coordinates is inferred,
the latter equations read
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Though a solid theoretical basis on first principles
is still lacking, it appears that to leading order the two-
point correlation function does not scale with the rota-
tion rate ;. Hence it can be concluded from Eq. (14)
that, in order to have no Q; dependence of R;;, the
function v behaves as v ~ 1/Q1. As a result, the two
additive constants appearing in the scaling laws (22) do
not depend on 2 either. Only the slope of the linear
scaling laws depends on the rotation rate.

The similarity variables corresponding to the mean
velocity (22) are to be obtained from the characteristic
Egs. (17). The integration yields

1 = C1 Q122 + Q1 v(Q1) (Clz_f —

3 = C3 Q1 2 + Q1 v(Q1) (C (22)
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where the integration constants 7;, F;; and G; are the
new similarity variables. In order to verify the similarity
reduction of Eq. (4) (in the limit v — 0), the quantities
F;; and G; are introduced as new dependent variables
only depending on 7;.

It should be noted that the presented results are
not limited to the two-point correlation equation only.
Indeed all results are consistent with correlation equa-
tions up to any arbitrary order. Due to space restric-
tions this has not been shown here.

DIRECT NUMERICAL SIMULATION

A DNS of the rotating channel flow has be con-
ducted. The utilized boundary conditions and the spec-
tral method is the same as in Kim et al. (1987). The
flow quantities are non-dimensionalized by h/2 and ur
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FIGURE 2. Streamwise mean velocity at Ro = 0
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FIGURE 3. Streamwise mean velocity at Ro = 10 in the
core region.
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FIGURE 4. Spanwise mean velocity at Ro = 3.2
and Ro=10— — —.

where h is the channel width and u, is the friction ve-
locity of the non-rotating case. The density p is set to
unity. The rotation number and the Reynolds number
with its numerical value for all subsequent calculations
below are respectively

_ Sk d Re, =M 180 (2)
Ur 2v

Two computations at rotation numbers of Ro = 3.2
and Ro = 10 have been conducted. All presented results
for Ro = 0 have been taken from Kim et al. (1987).
The domain size and the grid is to be obtained from
Oberlack et al. (1998). In Fig. 2 the streamwise mean

Ro
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FIGURE 6. Normal stresses at Ro = 0 and Ro = 10:
uU1U1l y UU2 — T T, U3U3 T T T .

velocity profiles at Ro = 0, Ro = 3.2, and Ro = 10 are
compared. As expected from the time scale analysis,
the near-wall region up to z2 = £0.9 is only marginally
perturbed. Approaching the core region of the flow, a
significant change in the mean velocity profile is visi-
ble with a very pronounced shoulder at z2 = +0.8 for
Ro = 10. In addition, a much flatter center region is
noticeable. For the lower rotation rate no linear region
is noticeable.

As predicted by the group analysis, two linear re-
gions emerge on each side of the centerline for the high
rotation rate. A more detailed perspective of the linear
region is given in Fig. 3 where only the “head” of the
profile for Ro = 10 is depicted. The linear regions cover
the wide range 2 = 0.2—0.6 on both sides of the center
line.

As already mentioned previously, a mean cross flow
denoted by @3 is induced by the rotation. It was prog-
nosticated that the flow is skew-symmetric about the
centerline as shown in Fig. 4.

Though a still clearer verification is still lacking,
it appears that the predicted linear profile is also visi-
ble in the induced crossflow. The location of the linear
region is slightly shifted towards the wall region com-
pared to the linear region of the streamwise velocity.
An interesting feature of the cross flow is the region
near the centerline. Therein the cross flow has opposite
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FIGURE 7. Streamwise mean velocity from DNS on the
left- and LES on the right-hand side at Ro = 10.

sign compared to the flow regions closer to the channel
walls.

In Fig. 5 the Reynolds shear stresses at Ro = 10
are displayed. Both the linear and the constant curves
for wiuz and Wau3 respectively can be derived from the
Egs. (1) and (3) by neglecting the viscous terms. One of
the most intriguing features of the shear stresses is the
induced uiuz component. The two other cross stresses
can both be interpreted in terms of a simplified eddy-
viscosity type of sense from its corresponding mean ve-
locities. However, this cannot be done for the uius shear
stress. Hence Wiz can only be modeled with the aid
of more elaborate turbulence models such as LES or
Reynolds stress transport models, to be presented in
the next subsection.

The normal stresses for both the rotating and the
non-rotating case are depicted in Fig. 6. Obviously, only
very weak differences are noticeable compared to the
strong change in the mean streamwise mean velocity
induced by the rotation.

LES AND SECOND-MOMENT CLOSURE MODELS

Classical two-equation models such as the k- or
the k-w model have not been examined since they ex-
hibit no reaction on system rotation at all.

The first turbulence model to be investigated is
the dynamic subgrid-scale model (Germano et al. 1991)
used in LES. The flow parameters and the numerical
scheme are the same as for the DNS. The grid sizes are
to be taken from Oberlack et al. (1998).

In Fig. 7 the streamwise mean velocities from DNS
and LES are compared. Even though the LES profile
changes significantly due to the system rotation it does
not exhibit a clear linear region as was observed in the
DNS. In addition, the mass flux is marginally smaller.

In Fig. 8 and 9 the shear and the normal stresses
from the DNS are very well represented by the LES
calculation.

The second turbulence model to be applied to the
present type of flow is a second-moment closure model.
The equations are based on the IP model (see Laun-
der et al. 1975) and the SSG model (see Speziale et
al. 1989). The near-wall behavior of the pressure-strain
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FI1GURE 9. Normal stresses from DNS and LES at Ro =
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FIGURE 10. Streamwise velocity from the RANS model
at Ro = 28.

term is modeled by the elliptic-relaxation approach de-
veloped by Durbin (1991). Model parameters have been
taken from the original publications.

The turbulent diffusion terms have a very strong
influence on the model results. Hence the linear regions
in the streamwise velocity are only visible at very high
rotation rates for which DNS results have not been ob-
tained yet. In Fig. 10 the streamwise velocity is shown
for the very high rotation number Ro = 28 obtained
with the IP model.

Besides the usual Coriolis terms, the rotation rate
; only appears in the pressure-strain model. Since the
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FIGURE 11. Spanwise velocity from the RANS model
at Ro = 3.2: IP model , SSG model — — —.
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FIGURE 12. Normal stresses from the SSG model at
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FIGURE 13. Shear stresses from the SSG model at Ro =
10: wruz , Uglz — — —, Uz — -~ —.

cross flow and the stress components uzus and uius are
solely induced by the rotation, it is the pressure-strain
model in particular which determines these quantities.
As a result the cross flow is extremely sensitive to the
implemented pressure-strain model. In Fig. 11 the span-
wise velocities for the IP and the SSG model are com-
pared at Ro = 3.2. Apparently the shape of the DNS
curve in Fig. 5 is represented by both models. Much
less sensitive to the pressure-strain model are the nor-
mal stresses. In Fig. 12 the normal stress from the SSG
model are presented which are within 30% of the DNS
results.
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In contrast to this, it can be seen in Fig. 13 that
from the shear stresses only u1uz is obtained with rea-
sonable agreement. Though an almost constant Tzuz
component is obtained in the center region of the flow
as predicted by the DNS, its value is much too small.
The Trus is not even qualitatively correct. The sign of
urus disagrees with the result from the DNS.

SUMMARY AND CONCLUSIONS

The general purpose of the present work is to es-
tablish a new but still very simple canonical test case to
study basic turbulence physics. It has been confirmed
by DNS that there are linear regions in both the stream-
wise and the spanwise mean velocity as was suggested
by Lie group analysis of the two-point correlation equa-
tions. Beside the mean flow, all six Reynolds stress
quantities have been computed. The stress components
from the DNS have the expected symmetry proper-
ties about the centerline as predicted by the symmetry
analysis.

A LES computation has been conducted which cap-
tures most of the DNS results very well. Only the linear
regions in the streamwise velocity were not clearly vis-
ible. Employing a second-moment model, some basic
trends of the flow have been captured. However quanti-
tative agreement was not achieved and the results where
very sensitive to the pressure-strain model.
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