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ABSTRACT

An alternative approach to large-eddy simulation
based on approximate deconvolution (ADM) is com-
pared with standard subgrid scale models by a priori
tests for supersonic compression ramp flow. With ADM
an approximation of the non-filtered field is obtained
by truncated series expansion of the inverse filter oper-
ator. Scale-similarity model and ADM give the best
correlation of subgrid scale terms with filtered DNS
data. Lower correlations are obtained with the dynamic
mixed model, the dynamic Smagorinsky model, and the
standard Smagorinsky model. It is also found that ex-
plicit compressible subgrid scale contributions cannot
be neglected and require modeling.

1. INTRODUCTION

Large-eddy simulation (LES) has matured to be a
tool for studying simple turbulent flows at flow param-
eters which render direct numerical simulation (DNS)
unfeasible. For physically and geometrically complex
flows, however, LES still suffers from fundamental mod-
eling problems. In this contribution we address the LES
of supersonic compression corner flow, which exhibits
considerable physical complexity due to the interaction
of shock, separation, and turbulence in an ambient in-
homogeneous shear flow. An obvious requirement for a
reliable subgrid-scale (SGS) model is that it reproduces
filtered DNS data with acceptable accuracy. We focus
on a priori analysis of several standard SGS models and
compare them with a new approximate deconvolution
model developed by Stolz and Adams (1999). DNS data
for supersonic compression ramp flow (Adams, 1998)
are used for this purpose. Of particular concern are
SGS terms in the energy equation, since compressibil-
ity effects can be expected to be significant for this type

of flow.

Frequently one uses variable-density extensions of
incompressible subgrid scale models for compressible
flows. In this case the trace of the subgrid scale
stress tensor is modeled explicitly (Yoshizawa, 1986)
or is incorporated into the filtered pressure (Vre-
man, 1995). For the subgrid scale heat flux an
eddy-diffusivity ansatz is used whereas other subgrid
scale terms in the energy equation are commonly ne-
glected. Most eddy-diffusivity models share the prob-
lem of predicting compressibility effects properly with
their counterparts in standard turbulence modeling for
the Reynolds-averaged Navier-Stokes equations. Since
scale-similarity model (SSM) and approximate decon-
volution model (ADM) reconstruct subgrid scale infor-
mation directly from the resolved scales, they readily
give approximations to all subgrid scale terms.

2. FUNDAMENTAL EQUATIONS

The flow is governed by the conservative Navier-
Stokes equations in curvi-linear coordinates. Filter-
ing can be applied to the equations in two different
ways (Jordan, 1999). The first possibilty is to filter
the Navier-Stokes equations in physical space and to
transform the filtered equations subsequently into com-
putional space. This procedure generally results in an
inhomogenous filter kernel with varying filter width.
Since an inhomogenous filter operator does not com-
mute with the derivative operators a commutation error
arises (Ghosal and Moin, 1995). The second possibil-
ity is to first transform the equations into computional
space and subsequently apply the filter in this space.
In this case homogenous filter kernels with a constant
filter width can be used within the domain execept for
the boundaries. The filter width in real space is an inte-
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ger multiple of the mesh size. We now obtain, however
a commutation error from the fact that transformation
and filter operation do not commute. Results depend
only weakly on which procedure is chosen but the sec-
ond approach is computionally more efficient (Jordan,
1999). The commutation error can be explicitly derived
and we give expressions fort the error terms below.

We define a filter operation in computational space §
by

B(E) = GE — &) ®ulg)) = / - &) u(e) dg' (1)
Q

where G is a filter function with characteristic filter
width A and Q is the computational domain. We ap-
ply the filter to the Navier-Stokes equations in com-
putional space and obtain the fundamental equations
for the resolved conservative variables {5, pii, E}.

Favre-filtered quantities are denoted by “®”. They are
computed from a mass-weighted filtering operation

po
P

=
“8” indicates that the respective quantities are com-
puted with filtered variables. The equations include
formally an O(A?) commutation error as has been men-
tioned previously. They are derived following Vreman
(1995) except that here filtering is done in computa-
tional space. In three dimensions the filter operation
is applied by a tensor-product of the one-dimensional
operators eq. (1). For the nomenclature of the follow-
ing equations we refer to Vreman (1995) and Adams
(1998).

The filtered continuity equation is
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vo1 is an O(A?) error term, which results from the
non-identity mapping between computational space &;
and physical space z; (commutation error). ¢z is an

error due to variable filter width. In our case the filter
G is not an explicit function of §; and ¢ vanishes.
The filtered momentum equations are
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The term S; arises from the non-linearity of the vis-
cous stresses. 1 and 7s2 are error terms analogous to
7c1 and yoa. 3

The equation for the resolved-energy E = p/(y —
1) + pstis /2 is obtained by filtering the enthalpy equa-
tion and by adding the filtered momentum equation,
multiplied by @;. We prefer the formulation using the
resolved energy, although this give rise to a pressure-

dilatation term o in eq (6.), since E does not explicitly
contain subgrid scale contributions. This is different
when the filtered energy E = j/(y—1)+ piiiiii 2+ 75 /2
is used, where 7;; is the trace of the subgrid scale stress
tensor (Domaradzki et al., 1998). This formulation is
blurred by the explicit presence of a modeled term in a
resolved quantity.
The resolved energy equation is
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with the abbreviations
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Note that the filtered Jacobian 0¢;/0z; has been
replaced by the unfiltered Jacobian 0¢;/0z;. This
contributes another error of order O(A?). Whereas
subgrid-scale stresses formally are analogous to the in-
compressible case, additional terms appear in eq. (2),
(4) and (6) due to the dilatation of the velocity field
and due to variable viscosity.

3. SUBGRID SCALE MODELS

We consider Smagorinsky model with Yoshizawa’s
(1986) extension SYM, the dynamic mixed model DMM
(Moin et al., 1991; Zang et al., 1993; Vreman, 1995),
the scale-similarity model SSM (Bardina et al., 1983),
the ’resolved turbulent stress-model’ RTSM with a ra-
tio of filter widths A/A = 2 (Pruett, 1997), and the
approximate deconvolution model, ADM.

In the ADM approach, we replace the unfiltered
quantities in the subgrid-scale terms by an approximate

deconvolution of the corresponding filtered (resolved)
quantities. If u* denotes the approximate deconvolu-
tion of w, the SGS terms o can be approximated by a
generalized scale-similarity form
o =F(@) - F(u) = F(w) — F(u") (8)
If the filter G has an inverse it can be expanded as
an infinite series. We truncate the series after N + 1
terms and obtain Qn as an approximation of G7!,

N

Qv=) (I-G)

v=0

9)

where I is the identity operator. The series on the
right-hand side converges uniformly for N — oo if
I — G|| < 1. The approximate deconvolution of u
is then given by
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TABLE 1. CORRELATION COEFFICIENT C AND RATIO A OF THE L;-NORMS FOR DIFFERENT SGS-MODELS.

model Tzz Tzy Tzz Tyy Tyz Tzz a1

Ly - norms -10° 10.297 3.124 2.363 5.955 1.613 4.637 4497
Smagorinsky/ C | 0.813 0.514 -0.227 0.721 -0.092 0.660 0.215
Yoshizawa A| 2113 7430 2470 1.160 4.328 1.289 2.116
dynamic C | 0947 0.850 0.696 0.849 0.578 0.695 0.592
mixed-model A| 1481 1364 1.055 2.186 1.542 1.827 0.934
scale-simi- C | 0967 0918 0.862 0949 0.846 0.945 0.854
larity model A | 1.554 1.906 1.628 2.943 2.509 2.902 2.875
resolved tur- C ] 0914 0.784 0.632 0.907 0.694 0.904 0.670
bulent stress A | 2872 4731 3326 6.509 6.775 5.961 9.515
approximate C | 0998 0995 0991 0.996 0.985 0.994 0.962
deconvolution A | 1.057 1.046 1.058 1.148 1.090 1.178 1.299

norms of the filtered DNS data to the respective model
U =QnN*1 (10) data are computed:

The approximation (9) has first been suggested for
image reconstruction (van Cittert, 1931) and was ap-
plied recently to LES by Stolz and Adams (1999). Trun-
cated iteration, which corresponds to the truncated se-
ries (9), is a well-known procedure in regularizing ill-
posed problems. Note that all convolution and decon-
volution operations are defined in real space and no
reference to Fourier space needs to be made. For the
results shown in section 4 we used N = 7. (N =3
already gives acceptable results.)

4. A PRIORI ANALYSIS OF SGS MODELS

For an assessment of the various SGS models we per-
form an a priori analysis using a DNS data base for
turbulent supersonic compression ramp flow (Adams,
1998). The filter eq. (1) is discretized by a second-
order Padé filter (Lele, 1992). For the grid filter a cut-
off wavenumber of k. = /4 - h is used and for the test
filter (where required) k., = 7/8 - h.

By inspection of the Ly-norms of the SGS terms in ta-
ble 1 and table 2, the subgrid-scale stresses 7;; and the
terms a1 to a4 are identified to be significant subgrid
scale contributions to the equations (2), (4) and (6). o
is the SGS dissipation, a2 the pressure-velocity corre-
lation describing the SGS heat flux, o the pressure-
dilatation correlation and a4 the SGS molecular dis-
sipation. For the Ls-norms integration is performed
over a domain which roughly corresponds to the sec-
tion shown in figures 1 and 2.

In order to evaluate the performance of the models,
both the correlation coefficient C between filtered DNS
(F) and model data (M) and the ratio A of the Lo-
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A good correlation is achieved by the models for val-
ues of C close to unity, a good prediction of the mag-
nitude by values of A close to unity.

The correlation coefficients C' and the ratios A show
that the Smagorinsky model SYM correlates poorly
with the filtered DNS data (see also figure 1f). The cor-
relation of the RTSM is quite good for A/A = 2, but
the magnitudes are considerably underpredicted. For
A/A = 1, where RTSM is equivalent with the SSM,
correlations and magnitudes are improved. The DMM
performs quite well, but not as well as the SSM. Corre-
lations C between 96% and 99%, and values of A close
to unity are obtained with approximate deconvolution
ADM (see also figure 1b). It should be noted that the
computational cost of ADM is comparable to SSM and
is much less than for the dynamic models.

Four different models have been tested for the most
significant SGS-terms «; of the energy equation. Fig-
ure 2d and table 2 show that the full dynamic mixed
model FDMM (Vreman, 1995) and an adaptation of
the RTSM do not perform well. The SSM and in par-
ticular ADM give a significantly improved prediction of
the SGS terms (figures 2b and 2c). Both models also
provide reasonable predictions for all other SGS terms.
Compared with SMM, ADM in addition shows an im-
proved prediction of the magnitudes.

and
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TABLE 2. CORRELATION COEFFICIENT C AND RATIO A OF THE Lo-NORMS
FOR DIFFERENT SGS-TERMS OF THE ENERY EQUATION.

model a2 as (o7} Qas ag
L2 - norms 3.329 2.254 0.717 0.092 0.181
dynamic C 0.510 0.137 — —
mixed model | A 0.762 0.628 — —
scale-simi- C | 0.838 0.781 0.944 0.805 0.573
larity-model A | 3.001 2926 5.127 2.981 0.932
resolved tur- | C | 0.330 0.552 — — —
bulen stress A | 5759 10.754 — — —
approximate | C | 0.977 0.959 0.988 0.984 0.879
deconvolution | A | 1.144 1.312 1.459 1.208 0.946

5. CONCLUDING REMARKS

We have analyzed a new approach to subgrid-scale
modeling based on approximate deconvolution ADM.
By a priori tests using DNS data of a supersonic com-
pression ramp flow, we have demonstrated that ADM
shows significantly better agreement with filtered DNS
data than conventional SGS models with the added
benefit that ADM gives approximations to all subgrid
scale terms. The computational overhead of the ADM
is comparable to that of the SSM, which is much less
than that required dynamic models. Recent applica-
tions of ADM to LES of homogeneous isotropic com-
pressible turbulence (Stolz and Adams, 1999) and in-
compressible turbulent channel flow (Stolz et al., 1999)
show excellent results.

REFERENCES

Adams, N. A., 1998, ”Direct numerical simulation
of turbulent compression corner flow,” Theor. Comp.
Fluid Dyn. 12, 109-129.

Bardina, J., Ferziger, J. H. and Reynolds W. C., 1983,
”Improved turbulence models based on LES of homoge-
neous incompressible turbulent flows,” Department of
Mechanical Engineering, Report No. TF-19, Stanford
University, Stanford, CA.

van Cittert, P. H., 1931, ”Zum Einflu} der Spaltbre-
ite auf die Intensitdtsverteilung in Spektrallinien, II,”
Z. Phys. 69, 298.

Domaradzki, J. A., Dubois, T. and Honein, A., 1998,
” A subgrid-scale estimation model applied to large eddy
simulations of compressible turbulence,” in Proceedings
of the 1998 Summer Program, Center for Turbulence
Research, Stanford Univ./NASA Ames, CA.

Ghosal, S. and Moin, P., 1995, " The basic equations

for the large eddy simulation of turbulent flows in com-
plex geometry,” J. Comp. Phys. 118. 24-37.

Jordan, S. A., 1999, ”A large-eddy simulation
methodology in generalized curvilinear coordinates,” J.
Comp. Phys. 148, 322-340.

Moin, P., Squires, K., Cabot, W. and Lee, S., 1991,
”A dynamic subgrid-scale model for compressible tur-
bulence and scalar transport,” Phys. Fluids A 3, 2746—
2757.

Lele, S. K., 1992, ” Compact finite difference schemes
with spectral-like resolution,” J. Comp. Phys. 103,
16-42.

Pruett, C. D., 1997, ”Toward simplification of dy-
namic subgrid-scale models,” in Advances in DNS /
LES, 291-298.

Stolz, S. and Adams, N. A.; 1999, ” An Approximate
Deconvolution Procedure for Large-Eddy Simulation,”
to appear in Phys. Fluids.

Stolz, S., Adams, N. A. and Kleiser, L., 1999, ” The
approximate deconvolution procedure applied to turbu-
lent channel flow,” Isaac Newton Institute / ERCOF-
TAC joint Workshop on Direct and Large-Eddy Simu-
lation, University of Cambridge, England, to appear

Vreman, B., 1995, ”"Direct and Large-Eddy Simu-
lation of the Compressible Turbulent Mixing Layer,”
Ph.D. Thesis, Dept. of Applied Mathematics, Univer-
sity of Twente, The Netherlands.

Yoshizawa, A., 1986, ” Statistical theory for compress-
ible turbulent shear flows, with the application to sub-
grid modeling,” Phys. Fluids 29 (7), 2152-2164.

Zang, Y., Street, R. L. and Koseff J. R., 1993, "A
dynamic mixed subgrid-scale model and its application
to turbulent recirculating flows,” Phys. Fluids A 5,
3187-3196.

885



(d) dynamic mixed model, DMM

(e) resolved turb. stress model, RTSM (f) Smagorinsky / Yoshizawa model

Figure 1. Subgrid-scale stress 7,,. Filtered DNS data and a priori SGS model predictions.

(a) filtered DNS data

(c) scale-similarity model, SSM (d) full dynamic mixed model, FDMM

Figure 2. Subgrid-scale energy term 4. Filtered DNS data and a priori SGS model predictions.
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