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ABSTRACT

Three-dimensional structure of coherent fine scale eddies
in turbulence is investigated by using a DNS database of a
homogeneous isotropic turbulence. The axes of coherent
fine scale eddies are determined and characteristics are
clarified. The axis has several nodes which are identified
as the minima of second invariant on the axis. Along the
axis, maximum azimuthal velocity and axial velocity show
relat:vely large fluctuations, while diameter is nearly
constant. At each node, the axis bends with a large angle.
Magnitude of advection velocity and direction of movement
of the coherent fine scale eddy also change at these nodes.
Probability density function of length of the segment
between neighboring nodes shows a peak at the length of
Taylor micro scale. The segment length shows a strong
correlation with the maximum second invariant and
increases with the increase of the second invariant with a
1/2-2/3 power. Probability density function of advection
velocity of each segment of the axis shows a peak at 1.25
times of r. m. s. velocity fluctuation, which means that
coherent fine scale eddies are very active in turbulence.

INTRODUCTION

The fine scale structure of turbulence is one of the most
important subjects in turbulence researches, because the lack
of the knowledge about the fine scale motions prevents
developments of the proper turbulence theory and turbulent
models. In the theories of small scale structure, many tube-
like and sheet-like vortices have been considered as smallest
structures in turbulence (Townsend, 1951: Tennekes, 1968:
Lundgren, 1982: Pullin er al, 1993). Recent direct
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numerical simulations of homogeneous turbulence (She et
al., 1990: Vincent and Meneguzzi, 1991: Jimenez et al.,
1993) have shown that fine scale tube-like structures are
present in homogeneous turbulence. In our previous
studies (Tanahashi et al, 1996: 1997a: 1997b: 1999a), we
have identified the cross-sections on axes of coherent tube-
like eddies from DNS data of homogeneous isotropic
turbulence and have shown that mean diameter of those
eddies is about 10 times of Kolmogorov micro scale (77) and
the maximum of mean azimuthal velocity is about a half of
root mean squire of velocity fluctuation (u,,). The
investigated cross-sections were selected to include local
maximum of second invariant of the velocity gradient tensor
on the axis of coherent tube-like eddies. The dependence
of the structure of coherent fine scale eddies on Reynolds
number is very weak. Tanahashi et al. (1997c, 1998) have
applied same analyses to turbulent mixing layer and showed
that tube-like eddies in fully-develop turbulent mixing layers
are very similar to those in homogeneous isotropic
turbulence. The vortical structures in turbulent channel
flows also shows characteristics similar to tube-like eddies
in homogeneous isotropic turbulence (Tanahashi et al.,
1999b). These results suggest that turbulence have a
universal fine scale structure which can be called as
‘coherent fine scale structure’ in turbulence. The
distributions of coherent fine scale eddies are closely related
with the anisotropic behavior of turbulent free-shear layers
(Tanahashi et al.,, 1998) and near-wall turbulence
(Tanahashi et al., 1999b). Since turbulent energy is highly
dissipated around the coherent fine scale eddies, the
coherent fine scale structure plays an important role in the
dissipation of total turbulent energy and its intermittent char-



acter (Tanahashi et al., 1999a).

To understand the details of fine scale motions of
turbulence, investigations of three-dimensional features of
the coherent fine scale eddies are required. In this study,
axes of coherent fine scale eddies are identified in
homogeneous isotropic turbulence.  Detail structure of
several coherent fine scale eddies is presented and then
statistical properties related to the three-dimensional
structure are discussed.

IDENTIFICATION OF AXES OF COHERENT FINE
SCALE EDDIES
DNS Data Base

In this study, DNS data of decaying homogeneous
isotropic turbulence which have conducted by Tanahashi ez
al. (1997a, 1997b) are analyzed. Reynolds number based
on u,,,; and Taylor micro scale of the DNS data is Re =37.1.

Identification scheme

Figure 1 shows contour surfaces of second invariant of
velocity gradient tensor for Re,=37.1. The second invariant
is defined as follows:

1
Q =E(ijv,j _S,*jS,'j)’ (1)

where S;; and W; denotes symmetric and asymmetric part of
the velocity gradient tensor, respectively. The visualized
region is 1/8 of whole domain which is calculated by using
256° grid points. Length of the box in Fig. 1 is 2.84/,
14.7A or 1657, where [, A and 7 are the integral length scale,
Taylor micro scale and Kolmogorov micro scale,
respectively. The second invariant is normalized by 77 and
U, in Fig. 1 and the level of iso-surfaces is selected to be

*=0.03. Hereafter * denotes a variable normalized by 77
and u,,,. Figure 1 suggests that many tube-like structures
exist in homogeneous isotropic turbulence. As discussed in
Tanahashi et al. (1997a, 1999a), visualized regimes such as
Fig. 1 depend significantly on the threshold of variables.
The identification scheme which is independent on the
threshold should be developed to investigate the essential
aspects of fine scale structure of turbulence.

In the previous studies (Tanahashi et al., 1997b: 1999a),
we have identified the cross-sections of coherent fine scale
eddies in homogeneous isotropic turbulence. The
definition of eddy is ‘rotating motion of fluid element
around a certain point’. The identification scheme consists
of the following steps:

(a) Evaluation of Q at each collocation point from the
results of DNS.

(b) Probability of existence of positive local maximum of
0 near the collocation points is evaluated at each
collocation point from @ distribution. Because the
case that a local maximum of Q coincides with a
collocation point is very rare, it is necessary to define
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Figure 1. Contour surfaces of the second invariant of the
velocity gradient tensor (Q*=0.03).

probability on collocation points.

(c) Collocation points with non-zero probability are
selected to survey actual maxima of Q. Locations of
maximal Q are determined within the accuracy of 10
in terms of relative error of Q by applying a three
dimensional cubic Spline interpolaiion to DNS data.

(d) A cylindrical coordinate system (r, 6, z) is considered
by setting the maximal point as the origin. The
coordinate system is assumed to have advection
velocity at the origin. The z direction is selected to be
parallel to the vorticity vector at the maximal point.
The velocity vectors are projected on this coordinate
and azimuthal velocity u, is calculated.

(e) Point that has small variance in azimuthal velocity
compared with surroundings is determined. If the
azimuthal velocities at r = 1/5 computational grid space
show same sign for all 6, that point is identified as the
center of the swirling motion.

(f) Statistical properties are calculated around the point.
From the center of the cross-section (x,), axes of each
coherent fine scale eddies are searched by using a following
auto-tracing argolism which has reported by Tanahashi et al.
(1997a).

(g) From x,, the investigated point is moved in the axial
direction with short distance ds. ds is parallel to the
vorticity vector at x,. A new cylindrical coordinate
system (r’, &, z’) is considered by setting the new point
as the origin.  On the (+’, &) plane with z’=0, the point
with maximum Q is determined, and the steps (c) — (e)
are applied.

(h) Central axis is determined by repeating the step (g).
In this procedure, | ds | is set equal to 1/5 computational
grid space. If angle (¢,) between x,.; and x, is greater
than 30 degree, the step (g) is applied again with | ds’ |
=lds | cos(@,).



Figure 2. Axes of coherent fine scale eddies in a decaying
homogeneous isotropic turbulence.

(i) After the calculation of statistical properties, above
steps are repeated until second invariant on the axis
becomes negative or swirling motion can not be
detected.

(j) 'The steps (g) — (i) are conducted in the opposite

direction of vorticity vector at x;.

(k) The steps (g) — (j) are applied for the next starting

point.
This identification scheme is applied for DNS data of
decaying homogeneous isotropic turbulence. Figure 2
shows the distribution of axes of the coherent fine scale
eddies for Re,=37.1. The visualized regime is the same in
Fig. 1. Visualized diameters of the axes are draw to be
proportional to the square root of the second invariant on the
axis. Larger diameter corresponds to stronger swirling
motion. The comparison of Figs. 1 and 2 shows that the
identified axes coincide with tube-like structures which are
visualized by contour surfaces of 0. As the identification
scheme does not depend upon the strength of the fine scale
eddy, Fig. 2 includes weak fine scale eddies, which are not
visualized in Fig. 1.

THREE-DIMENSIONAL FEATURES OF COHERENT
FINE SCALE EDDIES
Structure of a typical coherent fine scale eddy
Figure 3 shows an axis of typical coherent fine scale
eddy for Re;=37.1. Visualized diameters are selected to be
proportional to the square root of Q on the axis similar to
Fig. 2. The axis in Fig. 3 has several sharp bends that are
identified with the minima of second invariant on the axis.
The parts between bends seem to show relatively large
second invariant and to be nearly straight. Figure 4 shows
distributions of second invariant and third invariant on the

81

Figure 3.  Axis of a typical coherent fine scale eddy.
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Figure 4. Second and third invariant on the axis of the
typical coherent fine scale eddy. (a): second invariant,
(b):third invariant.

typical coherent fine scale eddy. Here, s represents the
coordinate along the axis. s, and s, is normalized by / and A
respectively and the origin of s is shown in Fig. 3 by an
arrow. The length of this eddy is about 2.4, 12.3 A or
1507n. The identification procedures are stopped because
second invariant on the axis becomes negative at the end of
sy (s,) =0 and distinct swirling motion can not be observed
at the other end. The second invariant shows relatively
large fluctuation on the axis, and several minima of Q exist.
In this study, we define the point on the axis with the
minima of Q as a node of the coherent fine scale eddy. The
coherent fine scale eddy in Fig. 3 has 5 nodes. The sign of
the third invariant represents the local stretching and
compression of the fluid element (Chong et al., 1990).
Figure 4(b) shows that most parts of the axis show negative
third invariant, and that this eddy is continuously stretched
along the axis. The third invariant seems to increase at the
nodes where second invariant decrease, which means that
the stretching rate on the axis decreases at the nodes.

Figure 5 shows maximum value of mean azimuthal
velocity on the cross section, axial velocity on the axis and
diameter for the typical eddy. In this study, radius of the
eddy is defined by a distance between the center and
location where the mean azimuthal velocity reaches to the
maximum value. As shown in our previous studies (Tana-
hashi et al. 1997c: 1999a), azimuthal velocity of the
coherent fine scale eddy is of the order of u,,,. Fluctuation
of maximum azimuthal velocity along the axis is well
correlated with that of second invariant (Fig. 4(a)). The
sections with large second invariant show large azimuthal
velocities. The axial velocity component is zero at s, = 1.4
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Figure 5. Distributions of maximum azimuthal velocity (a),
axial velocity (b) and diameter (c) of the typical coherent
fine scale eddy along the axis.
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Figure 6. Inclination of axis of the typical coherent fine
scale eddy (a) and curvature of the axis (b).

and increases along the axis with relatively weak
fluctuations. The magnitude of the axial velocity
component is relatively large and is of the order of .
Contrary to the large fluctuation of maximum azimuthal
velocity in Fig. 5(a), diameters of the coherent fine scale
eddy are nearly constant along the axis and about 87.
Therefore, the fluctuation of magnitude of swirling motion,
which is represented by the second invariant on the axis in
Fig. 4(a), is caused by the azimuthal velocity.

As shown in Fig. 3, the central axis of the coherent fine
scale eddy bends with large angle at the nodes. Figure 6
shows inclination angle (¢) and curvature (k) of the typical
axis. The inclination angle is integrated from the origin
and the curvature is normalized by Taylor micro scale. The
segments between nodes are nearly straight, while the axis
bends with large angles at the nodes. At each node, the
axis turns the nose with about m. The curvature of the parts
with relatively large second invariant is nearly constant and
the radious of the curvature is larger than Taylor micro scale.
At the nodes, however, the curvature is quite large.

As shown in the above, the coherent fine scale eddies
show strong swirling motion around the axis and have dis-
tinct three-dimensional character. These eddies are moving
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Figure 7. Magnitude of advection velocity in the radial
direction (a) and direction of the advection velocity in r-8
plane (b).
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Figure 8. Mean velocity distributions along the typical
coherent fine scale eddy.

in turbulence field with large advection velocity (Tanahashi
et al. 1999a). The advection velocities in the radial
direction on each section are shown in Fig. 7(a). The total
advection velocity of the fluid elements near the central axis
is represented by a sum of axial velocity in Fig. 5(b) and the
radial advection velocity in Fig. 7(a).  Although we
discussed only the radial advection velocity because the
axial velocity on the axis does not correspond to the
advection of the eddy if the coherent fine scale eddy can be
locally approximated by a stretched Burgers’ vortex. In the
case of the stretched Burgers’ vortex, axial velocity is
induced by the outer strain field, while the vortex has no
advection velocity. Figure 7(a) suggests that the advection
velocity in the radial direction is also order of u,,, and
fluctuation of that is relatively small in the segments
between the nodes. Figure 7(b) shows the direction of the
advection in a (r, 6) plane. The coherent fine scale eddy
changes its direction of advection drastically at every node.
These angles are order of 7 similar to the inclination angle in
Fig. 6(a). In other parts, the direction changes very slowly.
These results imply that segments of the coherent fine scale



oy

20

15

10

5

0
0.

0 05

Figure 9.

10 5

Mean dissipation rate distribution

typical coherent fine scale eddy.

0

20

along the

10° ¢ ————r
F PRI E
: . :
[ . ]
10t 3
o i

L)
102 | - 3

E .

i L]
10-3 L P | L e
10! 10° 10

1/2

Figure 10. Probability density function of the segment
length of coherent fine scale eddies.

eddies which are divided by the nodes are moving in other
directions respect: ely.

Figure 8 shows the distributions of mean velocity around
the typical axis. As described in the above, the distribution
of mean azimuthal velocity shows the existence of distinct
swirling motion around the axis. Furthermore, there are
radial flows to the center from the ambient. The incoming
flows are nearly uniform in the segments between the nodes.
The strong axial flow can be observed not only on the axis
but also in the regimes far from the central axis.

Figure 9 shows distribution of mean energy dissipation
along the axis. The coherent fine scale eddies has
important roles in the dissipation of turbulent energy and
intermittent character of that (Tanahashi et al., 1999a).
Around the typical axis discussed in this section, maxima of
azimuthal-averaged energy dissipation rate reaches to twice
of volume-averaged value.

The same analyses were applied for several coherent fine
scale eddies in homogeneous isotropic turbulence. The
results obtained for other eddies were quite similar to the
above, while total length of coherent fine scale eddies seems
to depend upon the maximum second invariant on the axis.

Statistics of coherent fine scale eddies in homo-
geneous isotropic turbulence

In the previous section, it is shown that the
characteristics of the central axes are drastically changed at
the nodes where second invariant on the axis has minima.
In this section, statistical properties concerning to the
segments between the nodes are presented.

Figure 10 shows the probability density function (pdf) of
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Figure 12. Probability density function of the advection
velocity of the segments of coherent fine scale eddies.

the segment length of coherent fine scale eddies. The
segment length is normalized by Taylor micro scale. The
pdf of the segment length shows a peak at Taylor micro scale.
The general physical interpretation of Taylor micro scale is
that Taylor micro scale represents the mean size of fine scale
eddies in turbulence, while this definition is quit obscure.
Our result in Fig. 10 implies that coherent fine scale
structure is directly related with Taylor micro scale. The
coherent fine scale eddies educed in present studies have
several nodes and total length is of the order of integral
length scale. Therefore, the coherent fine scale structure
includes three important length scale of turbulence: 77, A and
l. It should be noted that diameter of coherent fine scale
eddies can be scaled by Kolmogorov micro scale (Tanahashi
etal., 1997b: 1999a).

The relations between segment length and maximum
second invariant in the segment are plotted in Fig. 11. The
length of each segment shows strong correlation with the
maximum second invariant in the segment. The segments
with strong swirling motions that are denoted by large
second invariant tend to be long. The segment length
increases with the second invariant by a 1/2-1/3 power.

Figure 12 shows pdf of radial advection velocity where
the second invariant on the axis becomes maximum value in



each segment of coherent fine scale eddy. The radial
advection velocities are normalized by u,,,. As shown in
Fig. 7, the advection velocity in the radial direction and its
direction scarcely changes in the segment. Therefore, the
radial advection velocity of the segment can be
approximated by that at the center point with maximum
second invariant in the segment. The pdf in Fig. 12 shows
a peak at 1.25u,,, The largest advection velocity is over
4u,,,. The pdfs of velocity fluctuation in homogeneous
isotropic turbulence shows Gaussian distribution and the
maximum value is about 4 - 5u,,,, for this Reynolds number.
This result shows that the motion of the axes of the coherent
fine scale eddies is very active in turbulence.

CONCLUSIONS
In this study, three-dimensional features of coherent fine

scale eddies in homogeneous isotropic turbulence are

investigated. Following conclusions are obtained from our
study.

(1) The axes of the coherent fine scale eddy have several
nodes which are identified as the minima of second
invariant of the velocity gradient tensor on the axis.
Along the axis, maximum azimuthal velocity and axial
velocity show relatively large fluctuations, while
diameter is nearly constant.

(2) At each node, the axis bends with a large angle.
Magnitude of advection velocity and direction of
movement of the coherent fine scale eddy also change at
these nodes.

(3) Probability density function of length of the segment
between neighboring nodes shows a peak at the length of
Taylor micro scale. The segment length shows a strong
correlation with the maximum second invariant and
increases with the increase of the second invariant with a
1/2-2/3 power.

(4) Probability density function of advection velocity of
each segment of the axis shows a peak at 1.25 times of r.
m. s. velocity fluctuation, which means that coherent fine
scale eddies are very active in turbulence.
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