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ABSTRACT

A new technique for injecting scalar fluctuations in
a DNS of isotropic turbulence is presented. It is used
to study statistically steady states associated with
different levels of mixing. The results are analysed
in terms of p.d.f and they are used as a data base to
investigate the effect of the filtering operation that
is performed in the case of a LES. It is shown that
the p.d.f of the scalar is substantially affected by the
filtering operation. It is also shown that the Cook
and Riley (1994) subgrid model allows to reconstruct
a p.d.f which is in fairly good agreement with the
unfiltered DNS results.

INTRODUCTION

The mixing of a passive scalar by turbulence is of
interest for many practical applications. For problems
such as combustion, a description of the scalar field by
low order statistical moments is insufficient to account
for the non linear nature of the chemical reaction term.
Indeed what is needed is an estimation of the probabil-
ity density function (p.d.f) of the scalar fluctuation. It
is well known that the equation governing the evolution
of the p.d.f is not closed. It contains terms like the
conditional scalar dissipation which are unknown and
need to be modeled. For turbulent reactive flows it is
also important to understand and predict situations
in which the mixing is not complete. Another issue is
the influence of the length scale at which the scalar
fluctuations are created or injected in the flow. These
considerations have led us to investigate the behaviour
of the p.d.f of the scalar fluctuation in a simple case of
homogeneous isotropic turbulence in which the scalar
is injected by a new forcing technique in a Direct
Numerical Simulation (DNS). This technique allows to

control the scalar length scale as well as to investigate
situations corresponding to different levels of mixing
and is presented in the next section.

For real flow computations at high Reynolds number
encountered in the description of practical problems,
Large Eddy Simulation (LES) appears to be the most
reasonable way to predict the mixing with a good
accuracy. In particular, capturing the dynamics of the
large eddies is an important feature for predicting the
mixing since the large scales are initiating the transfer
of scalar fluctuations to the small scales. This kind
of simulation involves a filtering operation removing
the scalar fluctuations at small scales, and requires
the introduction of a subgrid model to account for the
effect of the small eddies and of the scalar dissipation.
The filtering operation was shown to affect the shape of
the scalar p.d.f by Jiménez et al. (1997) who also have
shown, using a priori tests in the case of a mixing layer,
that improved subgrid models (Cook and Riley 1994)
can satisfactorily take into account the contribution
from the small scales to the scalar statistics. In the
present paper the same problem is addressed in the
case of isotropic turbulence with scalar injection. A
top hat filter is therefore introduced in our DNS results
to investigate the effect of the filtering on the scalar.
A Large Eddy Simulation of the same flow is also
performed in order to make an a posteriori study of
the ability of an eddy diffusivity to model the effect of
the small scales on the mixing.

NUMERICAL METHOD AND INJECTION TECH-
NIQUE

The incompressible Navier Stokes equation and
the convection diffusion equation for the scalar ¢ are
integrated using a pseudo-spectral method. These
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equations are solved in a three dimensional cubic
domain of size L, with periodic boundary conditions
on both the velocity and scalar. The time stepping
scheme is a second-order Runge Kutta method. The
DNS are performed at a resolution of 128* grid points.
A random forcing is applied in the low wave-number
range of the velocity spectrum. It can be alternatively
white-noise or time correlated (generated using a
Langevin equation). This forcing leads to obtain a
statistically steady homogeneous and isotropic velocity
field.

The scalar forcing technique consists in refreshing
the field by operating an injection of fluctuations in
physical space. This operation is repeated periodically
in time, with a period T;. The basic outline of the
forcing can be described as follows. In the compu-
tational domain (of size L), n subboxes of size 1 are
randomly selected. In one half of these subboxes (n/2),
c(z) = +1 is imposed, whereas ¢(z) = —1 is imposed
on the other half. This procedure essentially leads to
a forcing function whose p.d.f is bi-modal. The choice

of 1/L allows to keep control upon the scalar integral
length scale L. and correlatively on the ratio R; = %ﬂ
where L, is the velocity integral length scale. Ly and
L. are defined by:
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where Ey (k) and E.(k) are respectively the velocity and
scalar spectra. A characteristic time of injection is

L3
Tres =T; (m)

where vy is the volume of a forced subbox. The choice
of the time scale ratio

Rt = Trca/Tlurb

where Tiurp = %}L (u’ being the r.m.s value of the
fluctuation velocity) is the eddy turnover time of the
turbulent field, governs the level of mixing.

DNS RESULTS

The simulations are performed at a Reynolds
number (based on the integral length scale) equal to 90
and a Schmidt number equal to 1. For all the results
presented in the paper, the integral length scale ratio
R, is set equal to 0.71. Fig.1 shows the time evolution
of the scalar r.m.s value (¢ = V< ¢? >) for two time
scale ratios, R = 0.35 and R: = 2.2. It is seen that
a statistically steady state is reached. Results are
then averaged over the stationary state. In Fig.2,
where the spectrum of the scalar fluctuation is plotted
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for R, = 2.2, it can be observed that, although the

Reynolds number is quite low, a K3 range seems to
be detected in the scalar spectrum. Fig.3 shows the
p.d.f of the scalar for three time scale ratios, R, = 0.35,
R: = 1.1 and R: = 2.2. For R: = 0.35 two peaks are
clearly observed close to %1 indicating a high level of
unmixing. The peaks are much smaller when R, = 2.2
and, for small and moderate amplitude fluctuations,
the p.d.f has a shape characteristic of a better mixed
situation. The p.d.f for R; = 1.1 is also given as an
example of an intermediate situation. Analysis of the
conditional dissipation (not presented here) leads to
conclude that, for the unmixed situations, the high
values of the p.d.f at &1 correspond to unmixed blobs
associated with a low dissipation rate.

APPLICATION TO L.E.S. AND SUBGRID P.D.F
MODELING

In the case of a LES only the large scales of the
field are computed. The key problem for applications
of LES to reacting flows is therefore whether the
subgrid models used to account for the small scales can
properly reproduce the statistics of the whole field.

The problem is indeed twofold, the first question
being whether the effect of the unresolvable scales on
the dynamics of large scales of the concentration and
velocity fields can be correctly taken into account (by
eddy diffusivity and eddy viscosity types of subgrid
models for example). The second question is whether
the contribution of the small scales to the scalar statis-
tics (and in particlular to the p.d.f which is needed
to evaluate the reaction term) can be satisfactorily
modeled.

In the present paper the second question is essen-
tially addressed and use is made of the DNS results
presented in the previous section to perform an a prior:
test of the Cook and Riley (1994) subgrid model.

The filtering operation for this test is performed in
physical space by a top hat filter of width h:

2@ = o / / /v o(&, t)ds" (1)

where c is the scalar fluctuation, ¢ the filtered fluctua-
tion and V the volume of the cubic domain of width h
centered on Z.

We now intend to reconstruct the complete scalar
p.d.f by modeling the scalar distribution at small scales.
The B-assumed p.d.f approximation allows to generate a
family of p.d.f (bounded at extremal values) associated
with very different levels of mixing. It is often used to
evaluate the distribution of the full scalar in practical
problems (Miller et al. (1993)). Following Cook and
Riley (1994) the B distribution is used here to approx-
imate the scalar p.d.f at small scales. This technique
was also used by Jimenez et al. (1997) and Réveillon



and Vervisch (1996). The 8 distribution has the form:

G 0 M G M

Pp(c) = T B@b (2)

in which a and b can be expressed in terms of the filtered

scalar € and of the subgrid variance c3.
a= (%E)(ﬁﬂ'ﬁ)c_%,ﬂl —1)and b= {FZa

2=c2-¢ (3)
An estimation of the complete scalar p.d.f can then be
obtained by the relation:

P(C)=/Pc(5,ca)Ph(c,E,c,)dEdc, (4)

where P. is the joint p.d.f of the filtered scalar and the
subgrid r.m.s value.

For a real LES computation , c2 needs to be esti-
mated (which can be done by similarity arguments-see
Cook and Riley (1994)). In the present paper c? was
directly deduced from the DNS using (3).

FILTERED RESULTS AND RECONSTRUCTED
SCALAR P.D.F

To investigate the effect of the filtering operation in
a Large Eddy Simulation the filter defined by (1) was
applied to the DNS results. Two filter widths hl et
h2 (& = &, 2 = L) were used. The scalar p.d.f
for the filtered and unfiltered results are compared in
Figs.4-5 and 6, for three time scale ratios. It can be
observed that the p.d.f of the filtered scalar exhibits
smaller peaks at ¢ = 1, and a higher amplitude for
small fluctuations, than the p.d.f of the unfiltered
field. It can also be observed that the influence of the
filtering is more important for the larger filter width.
These results are in agreement with those of Jimenez
et al. (1997). It has to be mentioned that the DNS
results were slightly corrected before applying the
filter: fluctuations larger than 1 (or smaller than -1)
were assigned to be equal to 1 (or -1). This correction
was introduced in order to avoid working with values
of € outside the [-1:1] domain in the study presented
below.

The filtered scalar is now used to test the recon-
struction technique proposed by Cook and Riley (1994)
and described above. The test is performed for the
three cases of mixing and for the two filter widths. The
reconstructed p.d.f are compared with the complete
p.d.f in Fig.7-8-9 for R; = 2.2, R; = 1.1 and R, = 0.35
respectively. It is seen that there is a good agreement
between the reconstructed and the complete p.d.f.
However, the reconstruction is less accurate when there
is a high level of unmixing. It is also observed that, as
could be expected, the p.d.f is reconstructed with more
accuracy for the smaller filter width.

The above results were obtained using (3) to esti-
mate the subgrid variance locally in the computational

domain. In order to check the inportance of a local
estimation, we also performed a test with an averaged
estimation of ¢ (< ¢ >, where <> denotes the
average over the numerical box). In figure 10 it is seen
that the agreement with the DNS is less satisfactory
for the averaged estimation of c2 than with the local
one. This is particularly true for the large fluctuations
where the averaged estimation leads to a strong
overprediction of the p.d.f.

Another source of error in the case of a LES is
the effect of the subgrid model on the resolved scalar
field itself. This effect is investigated by a posteriori
testing, that is to say by comparing the results of a
real LES with the results of a filtered DNS. LES have
been performed at resolutions of 32%, 64° and 128°
grid points with a spectral cut-off filter (at K.), and
with a spectral subgrid model (Chollet and Lesieur
(1981)). The subgrid Schmidt number is equal to 0.7.
In Fig.11 the scalar spectrum obtained with three
different cut-off wave-numbers (K. = 2.8, K. = 6 and
K. = 12.2) are presented. It is seen that the K -3
range detected in the case of DNS is confirmed by the
LES. It is also seen that the shape of the spectrum is
found not to depend on the cut-off wave number. In
Fig.12 the p.d.f of the scalar obtained with LES when
K. = 2.8 is compared to the filtered DNS results. It
is observed that the error remains small and that the
overall shape of the p.d.f is well reproduced. However,
when compared to the error associated with the subgrid
scalar fluctuation (corrected using the Cook and Riley
model (1994)) (Fig.7), the present error appears to be
larger. Further comparisons, using different subgrid
models, appear necessary before a definite conclusion
could be reached. The Reynolds number effect should
also be investigated, since in the present case we are
comparing low Reynolds number DNS results with
infinite Reynolds number LES.

CONCLUSION

DNS of isotropic turbulence were performed with
an injection technique for scalar fluctuations leading
to obtain statistically steady states associated with
different levels of mixing characterized by different
p.d.f shapes. It was shown that in the case of a LES
the error induced by the filtering operation removing
the small scale scalar fluctuations can be corrected
by using the Cook and Riley subgrid model. Such a
conclusion is in agreement with what was found by
Jimenez et al. in the case of a temporally growing
mixing layer.
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Figure 1: Time evolution of the scalar r.m.s
value for two time scale ratios, R; = 0.35 and
R, =2.2 (R =0.71).
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Figure 2: Scalar spectrum (R; = 2.2).
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Fig.3 Probability density function of the scalar
for three time scale ratios R; = 0.35, R; = 1.1 and
R =22 (R, =0.71).
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Figure 4: Probability density function of the

scalar for filtered (% = 4 and % = L) and

unfiltered DNS results; R, = 2.2, R; = 0.71.
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Figure 5: Same as Fig.4, but with R; = 1.1.
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Figure 6: Same as Fig.4, but with R; = 0.35.
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Figure 7: Reconstructed and true probability

density function; R; = 2.2.
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Figure 8: Same as Fig.7, but with R; = 1.1.
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Figure 11: Scalar spectra for the LES with
different cut-off wave-numbers K, = 2.8, K. =6
and K. = 12.2 (R; = 2.2).

Figure 9: Same as Fig.7, but with R; = 0.35.
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Figure 10: Reconstructed probability density
function. Comparison between results obtained
with local and averaged ¢ (hy = 2em,R, = 2.2).

Figure 12: Comparison between the p.d.f of the
filtered scalar (DNS) and the p.d.f of the scalar
obtained by LES (R; = 2.2).
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