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ABSTRACT

It has been shown experimentally that turbulence is
suppressed gradually in a rotating pipe with increasing
rotation rate due to the stabilizing effect of the centrifugal
force. These experimentally observed phenomena are
confirmed numerically using Large-Eddy Simulation (LES)
by comparing not only mean velocity profiles but also
turbulent intensity and Reynolds stresses at two different
rotation rates. In addition, the performance of two different
subgrid scale models, a dynamical model and the usual
Smagorinsky model, has been assessed for the case of fully
developed turbulent swirling flow.

A brief description of the numerical methods used is
presented. Particular attention has been paid to the numerical
treatment of boundary conditions at the centre-line.

INTRODUCTION

The computation of strongly swirling turbulent flow
is a challenging area for turbulence modelling. It is well
established that the conventional two equation k-& model has
been successfully applied to many engineering calculations
but its performance becomes poor in certain situations
including the presence of swirling flows (Nallasamy, 1987).
Large-Eddy Simulation has become a very useful and
powerful tool in turbulent flow computations and has been
applied to more and more practical engineering problems with
the advance of computing power and numerical techniques
(Lesieur and Metais, 1996, Voke and Yang, 1995, Voke,
1997, Yang, 1997). However, the literature on LES work in
the area of turbulent pipe flow is very limited. Unger and
Friedrich (1991) reported, to our knowledge, the first LES of
fully-developed turbulent pipe flow without swirl and the
only LES predictions of fully developed turbulent pipe flow
with rotation which we are aware of is that carried out by
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Eggels and Nieuwstadt (1993). Their numerical results
compared reasonably well with the experimental data
available at that time, which however lacked complete details
of the Reynolds stress field and what was available was not
measured in the fully developed flow zone. They also used
only a Smagorinsky subgrid scale model in the simulation;
how a dynamic subgrid scale model would perform in such a
swirling flow case is unknown.

Imao and Itoh (1996) have recently measured not only mean
velocity profiles but also turbulence intensity and Reynolds
shear stress in fully developed turbulent flow in an axially
rotating pipe. Their detailed measurements provide good
validation data for numerical computations and also confirm
that when rotation is added to the pipe the turbulence
fluctuations are suppressed due to the stabilizing effects
caused by the centrifugal force. The main objectives of this
paper are therefore: firstly, to study fully developed turbulent
pipe flow by LES, in particular to examine the effects of swirl
driven by the rotating wall of the pipe and assess these
predictions against the data of Imao and Itoh (1996);
secondly, to assess the performance of two different subgrid
scale models, a dynamical model and the usual Smagorinsky
model, in the swirling flow case.

BASIC EQUATIONS

The momentum and continuity equations used in the present
study are given below in a cylindrical polar co-ordinate
system (overbar indicating the filtering of the instantaneous
fields to give the resolved scale fields omitted in the following
equations for simplicity):
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Where q, represents the axial flux ru (u is the axial velocity),

w is the tangential velocity and q, is the radial flux rv (v is the

radial velocity) (note the density p has been set equal to 1.0

for convenience); the next section will discuss why the fluxes

are introduced instead of the usual velocity components (u,v).
The stresses are given as follows

T = 2(V+ VS, (&)
where vy is the subgrid eddy viscosity

v, = cA’s 6)
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and the strain rates S;jin the present study using a cylindrical
co-ordinate system are as follows:
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Fig. 1 Computational domain

C is taken to be 0.01 when the Smagorinsky subgrid scale
model is used (with the Van Driest damping near the wall) and
itis computed as follows when a dynamic subgrid scale model
is employed:

_ LMy (10)

MMy
Lj=Ty-1; ;';1“;:';; an
Ly = Lyj= 8L /3 (12)
M, = 4§‘§,~j—§3ij 13)

This is a standard procedure and details can be found
elsewhere (Germano et al., 1991, Lilly, 1992); in the present
simulation C 1is averaged in both streamwise and
circumferential directions. However, this still cannot
guarantee that C will not go negative although physically one
can argue that this means backscatter. Numerically this can
cause serious trouble when the total viscosity (sum of subgrid
scale eddy viscosity and molecular viscosity) goes negative.
In some regions, Mj; can be very small or may even approach
zero, making equation (10) poorly conditioned and as a result
of this C can be unrealistically large. In the current
simulations the value of C has been monitored to check that
it is not larger than 0.1 or less than 0. It has been found that
the computed C in most of the simulation time and most of the
computational domain is within this range.

NUMERICAL PROCEDURES

The above governing equations are discretised on a staggered
mesh using finite-volume methods. The explicit second order
Adams-Bashforth scheme is used for the momentum
advancement except for the pressure term. The Poisson
equation for pressure is solved using an efficient hybrid
Fourier multigrid method described in more detail by Voke
and Yang (1995).



Fig. 2 Axial velocity, Lines--LES,
Symbols--Exp. data

Figure 1 shows the computational domain in the present
study. The diameter of the pipe is D = 30mm and the length of
the computational domain is 4D. In the circumferential
direction the whole cross-section is simulated. The
Reynolds number based on the mean axial velocity denoted as
U, (p*Uy*area=mass flowrate) and the pipe diameter is
20,000. All the dimensions and the Reynolds number have
been chosen to match those of the experiments (Imao and
Itoh, 1996). The simulations are carried out with 192*64*128
gridpoints (x, 1, 8 directions respectively) giving Dx* = 30;
Dy* varies from 0.75 (nearest to the pipe wall) to 18 and Dz*
varies from 0.7 (closest to the centre) to 36. This is a finer
mesh near the wall than that used by Eggels and Nieuwstadt
(1993).

Note that the small grid spacings of this fine mesh used near
the pipe wall and the centre-line do cause time-step
limitations in the explicit method used to solve the momentum
equations.

Periodic boundary conditions are applied in the axial
direction since the simulated pipe flow is fully developed. The
same boundary treatment is applied in the circumferential
direction at © = 0° and 360°. On the pipe wall the usual no-slip
boundary condition is applied.

However, due to the cylindrical co-ordinate system
employed in the present study the governing equations
contain a singularity at the centre-line of the pipe (r=0) which
makes it difficult to specify boundary conditions for all
velocity components at the pipe centre. Unger and Friedrich
(1991) argue that no boundary conditions are needed since the
grid surface area goes to zero and therefore the momentum
and mass flux are zero too. The present work takes another
approach to deal with this by solving for the fluxes (r times
velocity components) instead of the velocity variables directly
as shown in equations (1) - (4). Therefore at the centre-line
zero is specified for all three variables employed in the
equations. In addition to the singularity at the centre-line, the
curvature of the cylindrical co-ordinate system can affect the
time-integration. The time step is restricted by stability
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Fig. 3 Tangential velocity; Lines--LES;
Symbols--Exp. data

criteria to avoid numerical instabilities in all explicit time-
integration schemes. Since the mesh size in the
circumferential direction is proportional to r, it can become
quite small towards the centre line. However, due to the
present approach employing the fluxes as the variables, the

minimum Dz* is 0.7 which is not too small and quite close to

the minimum Dy*. It has been found that, in these
circumstances, there is no need for all the terms containing
derivatives in the circumferential direction to be treated
implicitly in time as has been adopted by Akselvoll and Moin
(1996). The dimensionless time step used in the present study
is 0.0002 (normalized by D/U,;) which is more or less the

same as used for boundary layer transition studies (Voke and
Yang, 1995, Yang, 1997).

The simulations are initiated from a specified axial velocity
profile using a power law and random disturbances to mimic
the turbulent fluctuations in all three directions. Since the
random fluctuations generated in this way are large on small
spatial scales and not well correlated, the viscous dissipation
is large and this appears to remove the initial velocity
fluctuations very effectively and to laminarize the flow.
Therefore, the initial disturbances need to be stronger than the
expected r.m.s level but not too strong as numerical instability
may occur. There are alternative ways of avoiding such a
rapid decay of artificially generated turbulence, for example
reducing the viscosity initially. The simulations are run
sufficiently long to reach a statistically stationary state before
the statistics are collected. The final statistics are accumulated
by spatial averaging in the homogeneous streamwise and
circumferential directions and by time-averaging.

Three runs have been carried out in the present study, one
with the pipe wall stationary and another two with the pipe
wall rotating at different rates denoted by N = W /U, (W, is
the tangential velocity of the rotating pipe wall). Each
simulation is usually run for 20000 time steps before the
statistics are gathered and run for a further 40000 time steps
to accumulate the statistics. One run takes about 80 CPU
hours using one processor on a Cray-YMP machine.
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Fig. 4 Axial fluctuations; Lines--LES;
Symbols--Exp. data
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Fig. 6 Tangential fluctuations; Lines--LES;
Symbols--Exp. data
RESULTS

Figure 2 shows the mean axial velocity profile normalized
by the bulk averaged axial velocity U, versus the radial
position normalized by the pipe radius. The simulated results
compare reasonably well with the experimental data for all
three cases, N=0 (no rotation), N = 0.5 and 1.0 (pipe rotating).
Both the experimental data and the simulated results show
that when the pipe is rotating, the axial velocity increases near
the centre and decreases near the wall, and the axial velocity
profile gradually approaches a laminar shape with increasing
rotation rate, due to the stabilizing effect caused by the
centrifugal force. The experimental data show a slightly larger
increase near the pipe centre.

The comparison between the simulated and measured
tangential velocity profiles (normalized by W) is shown
inFigure 3 for N = 0.5and 1.0. Good agreement has been
obtained between the numerical results and the experimental
data for both cases. It can be seen from both the LES results
and the experimental data that the tangential velocity profile
isnot a solid-body rotation type but similar to a parabolic
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Fig. 5 Radial fluctuations; Lines--LES;
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Fig. 7 Turbulent shear stress; Lines--LES;
Symbols--Exp. data

distribution. It is well known that using a Reynolds-averaged
approach with a linear eddy viscosity model would predict a
linear forced vortex type profile. LES has produced better
results in this case where turbulence modelling becomes
difficult for strongly swirling flow. It is also worth pointing
out that the profiles under the two rotation rates are more or
less the same with little discrepancy between them and it can
be said that the profiles are almost independent of rotation
rate.

The above numerical results were obtained using the
Smagorinsky subgrid scale model and the results obtained
using a dynamical subgrid scale model (for cases N =0and 1)
are almost identical and therefore have not been shown.
However, there are some differences between predicted
turbulence quantities obtained using different subgrid scale
models as can be seen in Figures 4 - 7.

Following the practice by Imao and Itoh (1996) in
normalising their experimental data, U, is also used here
as the parameter for normalizing turbulence intensity and
Reynolds shear stress instead of u, (friction velocity). The
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reason for this is that when the pipe is rotating, the friction
reduces due to the stabilizing effect as mentioned above,
which means that u, decreases. If u, is used for normalization,

Reynolds stress components become large when the pipe is
rotating and hence it is difficult to tell the effect of pipe
rotation directly. In addition, tangential shear stress exists
when the pipe is rotating which also argues for U, to be used

as the normalization parameter.

Figure 4 shows the axial velocity fluctuations. The
experimental data indicate that when the pipe is rotating the
streamwise fluctuation decreases a little but not as much as in
the LES results. The LES results clearly show that the
fluctuation not only reduces when the pipe is rotating but also
the peak of the fluctuation moves away from the wall. This
is difficult to confirm from the experimental data as these are
not available very near the wall when 1/R is larger than 0.9,
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Fig. 9 (u’, V') vectors at N = 1
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The simulated peak values with both subgrid scale models are
quite close to those of the experimental data but the results
obtained using the dynamic subgrid scale show a slightly
better overall agreement and the peak value especially is
closer to the experimental data. However, the numerical
results obtained by both subgrid scale models decrease
slightly more quickly away from the wall.

The radial and tangential velocity fluctuations are presented
in Figures 5 and 6. The numerical results follow the
experimental data in that the fluctuations reduce slightly when
the pipe is rotating with the radial component especially
decreasing more compared with the other two components.
This indicates that the radial fluctuation is the most
suppressed. The predicted peak value locations for radial and
tangential fluctuations move away from the wall when the
pipe is rotating, similar to the axial component but the



movement is perhaps not so obvious. However, the simulated
results from both subgrid scale models show that the predicted
peak values, especially for tangential velocity, are slightly
lower than those of the experiment. Again, the results
from the dynamical subgrid scale model are slightly better.
The suppressing effect due to the rotation can be more
clearly observed in Figure 7 which shows turbulent shear

stress u'v’ profiles. The LES results agree well with the

experimental data in the near wall region but decrease more
rapidly than the experimental data, similar to the normal
stresses as discussed above. Both the LES results and the
experimental data show a considerable reduction when the
pipe is rotating. When the rotation rate changes from 0.5 to
1.0, the peak value of shear stress reduces to only about one-
third of that without rotation. Again the simulated results from
the dynamical subgrid scale are slightly better

Figures 8 and 9 show snapshots of turbulent velocity vectors
(u’,v’) on an (x,r) plane at N = 0 and 1. It is difficult to tell the
effects of pipe rotation from such a snapshot and hence the
purpose of presenting these plots is not to compare the
turbulent velocity vectors at different rotation rates but to
present a general picture of the turbulent structures by
examining the turbulent velocity vectors. It can be seen that
elongated vortical structures exist near the pipe wall and a
high intensity of fluctuations occurs in this region as well (this
corresponds to the peak values shown in Figures 4 - 6). There
are relatively weak fluctuations in the region near the pipe
centre.

Figures 10 and 11 show snapshots of the turbulent velocity
vectors (v’,w’) on an (r, 0) plane at N = 0 and 1. It can be seen
from both plots that vortical structures exist in certain regions
which indicates that most of the dynamics occur in those
regions. Further away from the wall towards the central
region there is much less activity. It is difficult to see the
effects of pipe rotation from those snapshots but if one
examines carefully the region very close to the wall then when
the pipe wall is rotating there is slightly less turbulent
fluctuations due to the suppression of radial fluctuations.

CONCLUSION

Large-Eddy Simulations with two subgrid scale models have
been used to study fully developed turbulent pipe flow with
different pipe wall rotation rates. The numerical results
compare reasonably well with detailed experimental data and
the performance of the dynamical subgrid scale model is only
slightly better than that of the Samogrinsky model in the
present study which may be attributed to the use of a fine
mesh and the turbulent flow being fully developed. It is
generally believed that a dynamic model would give better
performance for many flow situations such as transitional
flow, recirculating flow. The experimental observations that
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turbulence decreases with an increase in pipe rotation due to
the stabilizing effect of the centrifugal force have been
confirmed numerically by LES. The parabolic distribution of
the mean circumferential velocity found in experiments is
also reproduced by LES.
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