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ABSTRACT

An efficient particle dispersion model (SPEED) was
described for predicting dilute turbulent two-phase flows in
non-orthogonal grids. The continuous-phase flow field was
modeled using the Reynolds-stress transport model whereas
the particular flow field was modeled using the Lagrangian
trajectory model. The two phases are linked with each other
via two-way coupling sources. A robust numerical algorithm
was developed to determine the spatial distribution of
physical particles in irregular Eulerian control volumes. The
SPEED model requires tracking a small number of particle
trajectories to achieve a stochastically significant solution.
The present paper has focussed on how to implement the
SPEED model in body-fitted coordinates. To validate the
model, some demonstrative results are presented and
compared with the experimental measurements for a particle-
laden turbulent gas flow.

INTRODUCTION

When used to predict dilute steady turbulent two-phase
flows, the Lagrangian trajectory model is often associated
with a stochastic model to account for particle dispersion
induced by the carrier-phase turbulence. The conventional
Lagrangian stochastic model (Gosman and loannides, 1981)
assumes that discrete particles or droplets are interacting
with a series of turbulent eddies along their trajectories. The
period of time, over which a particle is interacting with a
randomly sampled eddy, is determined by minimizing an
eddy lifetime and an eddy transit time. The drawback of
these conventional models is that a relatively large number
of particle trajectories are often necessarily tracked to
achieve a stochastically significant solution. As a result,
much computer CPU time is often required for the
Lagrangian solver.

To avoid tracking too many particle trajectories, Chen
and Pereira (1996a; 1997a) developed a Stochastic-
Probabilistic Efficiency Enhanced Dispersion (SPEED)
model. Different from the conventional Lagrangian
stochastic model, the SPEED model uses the additional
probabilistic computation to account for the probabilistic
distribution of physical particles in space. A trajectory-
variance equation was derived to govern the variance of

particle trajectories induced by gas turbulence. The SPEED
model has the characteristics of simplicity in physical
background and ease in numerical implementations, and has
insofar been validated against various dilute turbulent two-
phase flows with simple flow geomtries, where the
orthogonal Cartesian coordinates are employed; see Chen
and Pereira (1998a; 1998b).

Most two-phase flows in industrial applications,
nevertheless, are often characterized by the complexity of
flow geometry. For example, dust particles are moving in an
ultrasonic gas flow meter (Chen and Pereira, 1997b). To
predict such two-phase flows, non-orthogonal coordinates
with  Cartesian velocity vectors, so-called partial-
transformation approach, are often used to deal with
complex flow geometry. It is known that the hybrid Eulerian-
Lagrangian modeling of two-phase flows requires knowing,
for the flow-field interpolation, the information of the
Eulerian control volume where a particle moves after an
advancing time step, regardless of one-way or two-way
coupling considered.

The objective of the present work is to extend the
SPEED model to curvilinear coordinates in order to predict
two-phase flows with complex geometry. An efficient
numerical algorithm is described for detecting arbitrary
Eulerian control volumes, thus greatly improving
computational efficiency. In addition, a robust numerical
algorithm is developed for integrating the probability density
function (pdf) over irregular Eulerian control volumes, as
required by the SPEED model. Such a robust numerical
algorithm makes it possible that the SPEED model be able to
efficiently predict dispersed turbulent two-phase flows using
curvilinear coordinates.

MODELING OF THE FLUID FLOW

For steady, dilute, turbulent two-phase flows, the time-
averaged Navier-Stokes equations for the continuous phase
are similar in form to those for single-phase flows. The
exchanges in momentum and energy between the two phases,
so-called two-way coupling sources, are accounted for in the
continuous-phase equations. The final time-averaged
transport equations for continuity and momentum can be
written tensorially in curvilinear coordinates as:
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where s denote  the cofactors of the coordinate
transformations, J the Jacobean determinant, and §j, the

two-phase momentum exchange. Note that the Cartesian
velocity vectors are used in the above equations, and that x,

and ¢,
systems, respectively. The Reynolds stresses are governed by

represent the Cartesian and curvilinear coordinate
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generation, pressure-strain processes, and two-way coupling
sources between the continuous and dispersed phases. The
generation term is given by
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The pressure-strain terms are modeled using the wall-
reflection modifications; see Chen and Pereira (1995) for
details. The transport equation for the dissipation rate of the
turbulent kinetic energy, € , is governed by
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where S!, accounts for the turbulence modulation by the
dispersed phase. The production term of the turbulent kinetic
energy is given by G =0.5P,. The foregoing model
Cos €)=

constants are given as follows: (C,, C,, C e

(0.22,0.18,0.18, 1.45, 1.6).

€1’

MODELING OF THE PARTICULATE FLOW
The Lagrangian equation of motion for each of
representative particle sizes can be written as

dU, §,-U,
—_nr :U_’fp +F, 6)
dt T

where the subscript p represents the particle phase, i the
Cartesian component, ¢ time, j, the fluid-phase

instantaneous Cartesian velocity, 7, the particle relaxation

P
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time, f, the drag correction coefficient, and F,

force, such as the lift force or gravity force. The fluid
instantaneous velocity is obtained using a modified particle
dispersion model (Chen and Pereira, 1995; 1998b) to
account for the effect of the turbulence anisotropy. The
relaxation time constant and the drag correction coefficient
are determined by

an extra

p,Dp

St f, =14 0.15Re}, (Re, <1000) 0]
)]

T,=

where p » is the particle density, D, the particle diameter,
and Re,

trajectories in the computational domain are obtained by
integrating the available particle velocities, that is,

»
the relative Reynolds number. The particle

. U . (8 )

TWO-PHASE COUPLING SOURCES

The two-way coupling effect requires accounting for the
sources in the Eulerian equations. The computations of the
exchanges in momentum and energy between the gas and
particle phases can be found in Chen and Pereira (1998b).

PARTICLE DISPERSION MODEL
Following Chen and Pereira (1997a), the evolution of
the particle trajectory variance o, is governed by

d 2,, 1 — !
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where the angular bracket represents the ensemble averaging
and Q, denotes the correlation between the two-phase

fluctuating velocities, given by
_ 1
"1+ Sy,

where St; =1,/T,; is a Stokes number, defined as the ratio

10)

of a particle relaxation time to a characteristic flow time.
Such a simulation of Q,, is aimed at correctly predicting the
limiting behavior for fluid particles and large heavy particles.
The Lagrangian autocorrelation function of R, (z) can be
obtained using a Frenkiel function

R, (r)= cos[ 2; ]exp[——L] (no summation) (11)

2T,

where T, is the integral time scale. For the SPEED model,

the trajectory determined with Eq. (8) represents the locus of
the trajectory center at each Lagrangian advance step.
Simultaneously, particle trajectory variances are determined
with Eq. (9) to account for the dispersive effect induced by
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Figure 1. Particle Motion in Non-orthogonal Grids

turbulence. Given a probability density function
(pdD), f (x, y), an ensemble-averaged particle property in a
Eulerian control volume V(x, y) can be obtained (Chen and
Pereira, 1997a) by

szAtk o, (xw Y )fA (x, Y)dXdy
((I)): v(x,v)

: (12)
TN T, (x, y)dxdy

where the integral is performed over a Eulerian control
volume, ‘v’(x, y). The summation over k represents all the

particle sizes crossing the Eulerian control volume, with N .
being the particle number flowrate of the k-th particle. Here
At stands for the residence time of the particle in the
Eulerian control volume in question. Similarly, the two-way
coupling source can be distributed over a Eulerian control
volume. The two-dimensional pdf f (x, y) can be expressed
as,

13)
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where ¢, and g, are the deviations of the particle
trajectory fluctuations in x and y directions, respectively.

CONTROL-VOLUME DETECTION

To detect which control volume is holding a particle, it
requires completing two tasks: 1) to judge whether a particle
lies inside a Eulerian control volume, and/or 2) to determine
an optimal search path towards the control volume holding
the particle, if the control volume being detected does not
hold the particle. Figure 1 illustrates a typical movement of a
particle in non-orthogonal grids during one time step Af.
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Figure 2. An Arbitrary N-Polygon

Our task now is how to efficiently determine the
unknown control volumes V; to which the particle has

moved after At. Consider an arbitrary N-polygon, shown in
Fig. 2. There are N edges and N vertices. The positions of N
vertices can be expressed in terms of the position (Cartesian)
coordinates (x,,y,) Wwith n 1, 2, 3, ... N. The first
question is how to know whether a particle lies inside this
polygon. In the present work, the counter-clockwise ordering
(Zhou and Leschziner, 1998) is used. As a result, a general
linear function can be written for any edge:

Q, (5 ¥)= (purc =20 =3~ Grrcn =3 N x,)

(14)

where n =1, 2, 3, ..., N for the N-polygon. The value of m is
given by

n
=int — N 15
m=in eger[N} (15)

where N stands for the total number of edges of an N-
polygon, and integer denotes the integral operation of n
divided by N. Under the counter-clockwise ordering, Eq.
(14) has the property for a particlein (x,, y, ):

<0 on the right-hand side of the edge
>0 on the left-hand side of the edge
=0 onthe edge

Qn(xp’yp): (16)

where n = 1, 2, 3, ..., N for the N-polygon. Therefore the
particle will be inside a polygon, if and only if
Q,,(xl,,y ’,)>0 is valid for all the edges. Generally

speaking, it is likely that the particles do not move
continuously from one control volume to another. Moreover,
the Lagrangian stochastic trajectory model makes it
impossible to adequately estimate the moving direction of a
particle after each Lagrangian advancing time step. As a
consequence, a search path has to be determined for
orienting the search direction. To optimize the search path,
Chen (1997) developed an efficient numerical algorithm
taking advantages of structured grids. The method is outlined
as follows. A unit integer variable may be defined in terms of
the signof Q,,
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1, = sign(l, Qn)= {

which is a sign function of Fortran. When I, = 1, the

particle lies on the left-hand side of Edge n or on the edge.
Summing all unit integer variables, we have:

N
I, =51 = { (18)
n=1

other values

where N is the total number of edges for an N-polygon. The
particle lies inside the N-polygon, if and only if it holds
that/,, = N. Based on Eq. (17), the index increments for

particle location can be calculated, and the search path can
thus be determined. For details, the reader is referred to
Chen (1997).

PARTICLE SPATIAL DISTRIBUTION

To determine the spatial distribution of physical
particles, it is necessary to evaluate the probability
distribution of physical particles in irregular Eulerian control
volumes. To this end, a robust numerical algorithm is
developed for integrating the pdf f (x,y) over irregular
Eulerian control volumes V (x, y). To obtain the integral of a
Gaussian probability over an arbitrary Eulerian control
volume an auxiliary probability function is defined as
follows:

] h%x
P(h,S)=5;£ 18(X)g(Y)dxdy 19)

where h and s are defined in Fig. 3(a) for a rectangular
triangle, and g(x) and g(y) are the Gaussian probability
density functions, having a zero mean and a unity deviation,
in the x- and y-directions, respectively. Based upon the series
expansion (Abramowitz and Stegun, 1972), Eq. (19) can be
expressed as:
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where g(")(x) denotes the n-th derivative of g(x) with
respect to x, and ¥  is defined by

y = @1
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The n-th derivative of g(x) with respect to x is given by
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where M is the integer of n/2 represents the integer of n/2.
The integral of the probability density function over
triangles, see Fig. 3(b), can be written as

P(0A0OB)=1,P(h,s, )+1,P(h.s,) (23)

where I, and I, are taken to be either positive or negative
unity, depending on the relative position. The signs of I,
and 7, in Eq. (23) can be determined using Eq. (17). Let
P,
volume. It follows that

be the integral of the pdf over the Eulerian control

L g7 y)dudy 24)

P
270 .0 ,, vy

where V (x, y) stands for the integral domain, i.e., the
control volume (i, j), f(x, y) is given by Eq. (13). Making
the following variable transformations,

X=x, y-y,

&= » 1 (25)
O O
we have
2 2
P == exp[————‘f k) }dﬁdn 26)
27 vEn) 2

where V(£,7) is the transformed control volume in & -7
coordinates. To obtain the Gaussian pdf over an irregular
quadrangle, the quadrangle is decomposed into four
triangular domains. As a result, the probability can finally be
evaluated over the arbitrary quadrangle.

DEMONSTRATIVE RESULTS

An adequate evaluation of the Lagrangian trajectory
model requires providing complete initial conditions from
experimental measurements for two phases, since initial
conditions were found very important to numerical
predictions (Chen and Pereira, 1996b). In the present work,
experimental measurements (Sato et al., 1996) were used for
the SPEED model validation. Their measurements provided
complete initial conditions for both the gas and the particle
phases at the inlet.
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Figure 4. Particle Axial Mean Velocity

In addition, several profiles downstream were provided
for the model validation. The turbulent gas flow had a
Reynolds number of 3.3 x 10*, and the glass particles had a
mean diameter of 140 um and a standard deviation of
8.9 um . The computational domain consisted of 500 mm and
100 mm in the x- and y-directions, respectively. The grid-
independent solution was obtained using a total of 125 x 80
non-orthogonal grids such the flow domain. The initial
conditions for the two phases were obtained by interpolating
experimental measurements. The particle diameter at the
inlet was obtained by summing over the mean value over a
fluctuating value that obeyed a Gaussian distribution having
the given standard deviation. The wall-function approach
was used to bridge the near-wall layer.

SPEED Model (800)

?

————— Conventional (25000)
O Measurements

Particle Axial RMS Velocity u (m/s)

10
Distance from the Wall y (mm)

Figure. 5 Particle Axial Fluctuating Velocity

The boundary conditions for the Reynolds stresses were
handled using the method of Lien and Leschziner (1994).
The solution to the Reynolds-stress equations was based on
the apparent-viscosity (Lien and Leschziner, 1996) to
enhance the coupling between momentum and Reynolds-
stress equations. For the particle phase, a total of 800 particle
trajectories were tracked for the SPEED model whereas a
total of 25000 particle trajectories were tracked for the
conventional particle dispersion model. The conventional
Lagrangian stochastic model has been modified (Chen and
Pereira, 1996b) to account for the effect of turbulence
anisotropy.

In the present work, only demonstrative results are
presented. To assess the SPEED model, the numerical results
of the conventional Lagrangian stochastic model were also
presented for comparison. Figure 4 compares the
experimental measurements of Sato et al. (1996) with the
numerical predictions of the SPEED model and the
conventional Lagrangian stochastic model for the
downstream position of x = 250 mm. Note that the SPEED
model tracked only 800 particle trajectories whereas the
modified conventional stochastic model tracked 25000
particle trajectories. It is evident that the two model
predictions agree well with each other and with the
experimental measurements. It has been found that the
particle mean velocity is usually not sensitive to the number
of particle trajectories (Chen and Pereira, 1996b).

Compared in Fig. 5 is the profile of the particle axial
fluctuating velocity at the downstream station of x = 250
mm. Close to the wall region (y < 5 mm), where particles
were injected at the inlet, particles have large velocity
fluctuations. Obviously, this is attributed to both the large
turbulence production in this region and the energy transfer
from the inlet. As a result, the particles can acquire large
turbulence from the gas phase in the region (y < 5 mm) close
to the wall. In general, the numerical predictions agree
satisfactorily with the experimental measurements, even
though the velocity fluctuation was underpredicted in the
near-wall region and overpredicted in the region away from
the wall. Of note is that the SPEED model predictions are
slightly better than those of the modified conventional
Lagrangian stochastic model.
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Figure 6. Particle Volume Concentration

Finally, the particle volume concentration is shown in
Fig. 6 for the downstream station of x = 250 mm. A similar
trend can be observed for the two model predictions. A
slightly better agreement with the measurements was
achieved with the SPEED model. To evaluate the
computational efficiency of the two particle dispersion
models, the relative CPU times were monitored since the
absolute time depends on many external factors such as the
computer itself and the geometry etc. It was found that the
SPEED model required about 23.2% the computer CPU time
of the conventional Lagrangian stochastic model. Evidently,
the computational efficiency was improved as result.

CONCLUDING REMARKS

A general SPEED model was described for an economic
prediction of turbulent two-phase flows using non-
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orthogonal numerical grids. A robust numerical approach
was developed to determine the probability distribution of
physical particles over irregular Eulerian control volumes. In
addition, a simple but efficient numerical approach was
developed for rapidly detecting a Eulerian control volume to
which the particle has moved after each Lagrangian time
step. The present SPEED model has the characteristics that it
requires tracking a small number of particle trajectories with
reduced statistic noise. Demonstrative numerical results were
presented for a particle-laden turbulent gas flow. Compared
with the conventional Lagrangian stochastic model, the
SPEED model tracked only 3.2 % the number of particle
trajectories while yielding agreeable predictions with
experimental measurements. It was found that the SPEED
model required about 23.2% the computer CPU time of the
conventional Lagrangian stochastic model for the present
two-phase  flow considered, thus offering higher
computational efficiency for the Lagrangian solver.
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