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ABSTRACT

We apply a two-fluid model with a second order closure
of the turbulence in the simulation of wall bounded bubbly
flows. We analyse the interfacial effects on the turbulence
structure and we evaluate the role of the turbulence and of
the interfacial forces on the void fraction distribution near
the wall. The simulation of the pipe bubbly flow in micro-
gravity condition shows that the turbulent contributions
issued from the added mass force play an important role in
the phase distribution phenomenon. In normal gravity, the
simulations of boundary layer and pipe bubbly flows allow
to adjust the lift force model in which we take into account
the wall interaction effect.

INTRODUCTION

Many bubbly flows experiences show that the presence of
the dispersed phase alters considerably the liquid turbulence
structure (Lance et al, 1991, Moursali et al, 1995, Serizawa
et al, 1986). In the other hand, the turbulence of the liquid
phase was pointed to have an important role in the phase
distribution (Drew and Lahey, 1982).
The elaboration of general models allowing to predict the
two-phase turbulent flows (average and fluctuating
velocities of both phases and their phase fraction) represents
an actual challenge. However, in spite of the progress
achieved in bubbly flow modelling (Lee et al, 1990, Lance
et Lopez de Bertonado, 1992) some important difficulties
subsist; in particular the ability to predict the phase
distribution remains limited by the inadequate modelling of
the turbulence and of the interfacial forces. The model
presented here attempts to improve the ability of two-fluid
flow models to predetermine bubbly flows with moderate

void fraction by laying emphasis on two aspects of the
interaction between phases. First we take into account the
turbulent correlations issued from the added mass in the
expression of the force exerted by the liquid on the bubbles:
this turbulent contribution, which is customary ignored, is
proving to be important in the phase distribution phenomena
(Chahed et Masbernat, 1998b); and second we develop a
turbulence model adapted to bubbly flows in order to
describe accurately the Reynolds stress tensor in the liquid.
The model is applied to the simulations of wall bounded
bubbly flows and the numerical results are confronted to the
experimental data of the boundary layer (Moursali et al,
1995) and of pipe bubbly flows (Kamp et al, 1994, Serizawa
et al, 1986).

l. AVERAGE MASS AND MOMENTUM BALANCE
EQUATIONS IN BUBBLY FLOW

We note ) the characteristic function of the gas phase
(%e(M,t) =1 if the point M is in the gas and 0 if not) and
<® > the average field of @, <> is an averaging
operator that verifies the Reynolds conditions. The void

fraction o the mean field @, and the fluctuating field

<I)'G in the gas phase are given by:

a= <y > )

adg = %P (©)]
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In the same manner, the mean and the fluctuating fields

dTL and CD'L in the liquid phase, are given by:

(1-a)®, =< (1-xo)® > @

(1= 21)® = (1- W)@, + (1) P, 5)

We note u and 5 the average velocity and pressure
fields and g the gravity acceleration. For stationary
incompressible bubbly flows without mass transfer
(p = const ), the averaged balance equations of mass and
momentum in the liquid and in the gas are:

Ve(l-o)u, =0 ©)

Veau, =0 @)

D = —
(1-o)p, ou, =-Vp, =Ve(l-o)p,u,u,)

®)
+(1-a)p,. g

0=-0,Vp” +M, ©)

D 8 —
ith — = —+(u,.V
with = = —+(.V)

In the equation of the momentum balance, we neglect the
acceleration and the weight of the gas as compared to the
force exerted by the liquid on the bubbles p, <<p, ; so
the total force exerted on the bubbles is zero as indicated in
equation (9). This force contains the non disturbed flow
action (pressure term or Tchen force) and the interfacial
term Mg =<yf, > where f is the density of the force
due to the perturbed flow action.

Assuming the spatial homogeneity of the first and the
second order moments over the scale of the bubble, the force
density is expressed by:

B

1 —S
f, =-§;— IBSBGL.ndS=V.c‘L" (10)
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where c(L‘) designates the stress field due to the perturbed

flow, 3, and 09, are respectively the volume and the

—)
boundary of the bubble and is an average operator

over the volume of the bubble.

The formulation of the momentum interfacial exchange
set many questions especially concerning the averaging of
the fluctuating terms issued from of the drag, added mass
and lift forces. The common method consists to keep the
contributions due the average velocities fields of the liquid
and the gas phases while the turbulent contributions of the
interfacial force are ignored or eventually expressed via a
supplementary dispersion term proportional to the void
fraction gradient (Lance and Lopez de Bertonado, 1992). We
will show the insufficiency of these formulations and we
propose to take into account the turbulent correlations issued
from the added mass force; we have proved that t these
turbulent correlations, which contains turbulent correlations
in the liquid and in the gas, are important in the phase
distribution phenomenon (Chahed and Masbernat, 1998b).
The interfacial momentum transfer term employed here is:

3 C == = =

M=o, TD u,u, —2p,C, (1-f,(y")o, xu,
d = D= 1 . -

— pLCA(H u, —BUL) -p.C, a V.o(ugug —uu, )

an

=

d o ~
Where I = > +(u;.V)) and u is the relative velocity

of the bubbles defined by:

oci=<x0(uG -u) >=a(a—;)—<xﬁu' > (12)

The interfacial force (11) includes respectively the drag
force (drag coefficient C,), the lift force (coefficient C, )
that is expressed with a modified lift coefficient taking into
account an eventual wall interaction effect and the added
mass force (coefficient C,) that includes the average and
turbulent contributions. The other turbulent contributions
issued from the drag and lift forces are omitted assuming
first that the fluctuation of the slip velocity can be taken into
account through an eventual modification of the average
drag coefficient and second that the liquid velocity and
vorticity fluctuations are weakly correlated.

The last term in the relative velocity expression, equation
(12), represents a correlation between the continuous phase
velocity fluctuation and the instantaneous phase distribution



and is modelled following Simonin et al (1989) as a drifting
velocity which takes into account the dispersion effect due
to bubbles transport by the turbulent fluid motion.

. TRANSPORT MODEL OF THE REYNOLDS
STRESS TENSOR IN BUBBLY FLOWS

The turbulent correlations of the dispersed phase u'Gu'G

are related to liquid turbulent stress tensor through a
turbulent dispersion model based on the Tchen theory in
homogenous flow. The turbulent stress tensor of the

continuous phase uju, is computed using a second order
closure of the Reynolds stress tensor in bubbly flows,
(Chahed and Masbernat, 1998a). In this model, the Reynolds

stress tensor in the liquid is separated into two parts: an
)

irrotationnal part  w,u,  induced by the bubbles
displacements and controlled by the added mass force and a
™

turbulent part u,u; produced by the gradient of the mean

velocity which also contains the turbulence generated in the
bubbles wakes; we propose a modelled transport equation
for each part as follows:

- '(S) - '(S) 3 D —|2
—u,u, = Diff(uu, )+ ——aju,
Dt 20 Dt 13
+—-—ou,u
20Dt " °F

=T

D = . - =(T) - I(T) ==
auLuL = Diff (u u, )—25ym[uLuL .VHL}(M)

+d-¢€d

The transport equation of the pseudo-turbulent part,
equation (13), expresses a diffusif transport and a
production-redistribution mechanism related to the added
mass force. In the transport equations of the turbulent part,
equation (14), it is assumed that the interfacial production of
the turbulent energy and its dissipation rate are balanced in
the bubbles wakes. The dissipation is thus identified to the
isotropic dissipation in the small scales resulting from the
energy cascade and the transport equation has a same form
as in single-phase flow.

The diffusion and redistribution terms in equation (14)
are modified in order to take into account the interfacial
effects. In the model of the diffusion term we introduce a
supplementary turbulent transport par the bubbles with the

characteristic time scale T, ; so the single-phase model of

Launder et al (1975) is "generalised" in two-phase bubbly
flows in the form:

—(T) —)
Diff(‘¥) = Loy (1-o)(tuu +tuu VY| (15
I-a ’

==
. trace(uu
with T, = ——(i—-l ,
€

4

T, =Cy
u

R

It should be noted that the diffusion effect associated to
)

the bubbles motions T, u'u  generalises Sato et al (1981)

formulation of the turbulent viscosity induced by the
bubbles.
In a same way as in single-phase flow, the redistribution

term ® =@ +P™ s spilt into two-part, a linear part
®™ and a non-linear part ®™ . In the non-linear part
®™  we introduce a supplementary stretching effect
produced by the bubble displacement with the time scale T,

in order to represent the tendency to the more isotropy
observed in bubbly flows (Lance et al 1991).

=™ 1 ==
d)‘”L>=—C1(T[1+aT;')[uu -5 trace(u )] 16

The linear part of the redistribution term @™ is
modelled as in single-phase and the Launder et al (1975)
model is adopted. We also take into account the wall effect
on the redistribution mechanism using a similar single-phase
phase model. The transport equation of the dissipation rate
€ is also the same as in single-phase flow where the
diffusion term is modelled according to (15).

Il NEAR-WALL ANALYSIS IN BUBBLY FLOW

The wall effect in bubbly flow is double: in one hand, in a
same way as in single phase flow, we have to interpret the
wall effect on the average and turbulent kinematic fields
according to wall laws in order to define the boundary
conditions of the model; in the other hand we have to
express the wall effect on the force exerted by the
continuous phase on the bubbles.

.1 _Wall effects on the average and turbulent
kinematics fields

In their experience of bubbly boundary layer, Moursali et al
(1995) have proved that the liquid average velocity have
logarithmic profiles near the wall with the constants ¥ and
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b that are different from the single-phase constants ¥, and

b,. We note 5 the average longitudinal velocity, u, the
friction velocity and y the distance from the wall. The
logarithmic wall law is:

LR SN a7
X A%

El=a

The liquid momentum equation (4) has the same form as
in single phase flow and the difference between the
constants of the single phase and the two-phase logarithmic
profiles is certainly due to the bubbles effect on the
turbulent viscosity in the near wall flow region.

In the logarithmic near wall zone, the turbulent viscosity

in bubbly flow is v, =y u,y while the model of Sato et al

(1981) gives, in a same manner as our model, an expression
of the turbulent viscosity in the form:

u, —Uu

Vv, =%, Wy + Cod (18)

where u,, is the friction velocity of the single-phase flow

with the same average velocity gradient. We thus obtain the
following relation between the single-phase and two-phase
constants ¥, and y,:

X —14a(1+0.52)+0(a*) (19)
%o

C,od U,
2y, AoUs

where a =

If we assume a linear distribution of the void fraction
between the wall (where the void fraction is zero) and the
void fraction peaking, the parameter "a" is thus:

Uy

KoUx

a~Ca, (20)

Where o is the value of the void fraction peaking located

w 2
at the distance y, = Zp ~1, (Moursali et al, 1995)
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The determination of the second constant b of the
logarithmic profile is founded upon the assumption that the
thickness S, of the viscous sub-layer is not modified in
two-phase bubbly flows, (Moursali, 1995). Thus we deduce
the following relation:

b=b, +(1-a(1+0.52))S, -b,) @1

For a given boundary layer bubbly flow, the equations (19),
(20) and (21) indicate that the constants of the logarithmic
law in bubbly flow depends on the amplitude of the void
fraction peaking near the wall. This outcome is in perfect
concordance with the experimental results of Moursali et al
(1995).

11l.2 Wall effect on the interfacial force

The interaction between the bubbles and the wall
introduces a modification of the force exerted on the bubbles
particularly on the lift force: the drainage of the liquid film
between the bubble and the wall brings about a repulsive
force that reduces the averaged lift force; We note
F = E,+ F, the total lift force where F is the lift

force without the wall effect:

Fw=—CJ§j—:5%$ (22)

and F_, is the repulsive force that results form the

interaction with the wall; Antal et al (1991) proposed an
expression of the wall repulsive force in a laminar flow in
the form:

- 200 Cor

Lp d y Cwl) (23)

We assume that this formulation remains valuable in
turbulent bubbly flows, we note y, the distance where the
wall effect becomes negligible and y:' the distance where

the lift force is zero (F , = -F,), the lift force in the
logarithmic zone can be written in the form:

F =F,(1-f,(y") (24)
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IV. RESULTS AND DISCUSSION

The application of the two-fluid model in free turbulent
bubbly flows confirms the pertinence of the improvements
proposed to ameliorate the predetermination of the
turbulence structure in basic bubbly flows: the model
predicts correctly the large enhancement of the momentum
diffusivity observed in bubbly flow with an important
amount of pseudo-turbulence (mixing layer and wake
bubbly flows) and reproduces the supplementary amount of
the isotropy observed in some sheared bubbly flows (in
uniform shear bubbly flows for example). The modification
of the redistribution and diffusion modelling was tested in
this flow configuration and the value of the coefficient Cy
was adjusted to 2/3 (Chahed and Masbernat, 1998a).

The behaviour of the turbulence model in the prediction
of near wall bubbly flows experiences e.g. boundary layer
(Moursali et al, 1993) and pipe bubbly flows (Serizawa et al,
1986), is also decisive in demonstrating of the pertinence of
the turbulence modelling. The model allows reproducing
the turbulence structure as it is altered due to the bubble
presence in the boundary layer bubbly flows, figure (1) and
pipe bubbly flows figure (2).
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Figure (1): Turbulent intensity in single-phase and
bubbly boundary layer flows

These results furnish an explanation to the mechanisms
whereby the attenuation of the turbulence in bubbly flows
can occurs. The supplementary stretching induced by the
bubbles displacements provokes an attenuation of the shear
stress, as a result the turbulence production by the mean
velocity gradient is reduced and we can note a diminution of
the turbulent intensity as observed in some experiences of
wall-bounded bubbly flows.
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Figure (2): Turbulent shear stress in single-phase and
bubbly pipe flows

We specified in Chahed et al (1998a) the important effect
of the turbulent correlations issued from the added mass
force on the prediction of the void fraction in a bubbly
wake. The recent experiences of pipe bubbly flow under
micro-gravity conditions (Kamp et al, 1994) provide a
remarkable data which allow us to analyse the part played
by the turbulent contribution of the interfacial force in the
bubbles migration phenomenon. The application of the
model to pipe bubbly flow under micro-gravity condition
and to upward and downward pipe bubbly flows in normal
gravity shows clearly the pertinence of the interfacial force
model we propose. An important result of these experiences
(figure 1) is to show that, even though the gradient of
turbulence in continuous phase is not appreciably modified,
the radial void fraction gradient is inverted according as the
gravity is active or not (according as the interfacial
momentum transfer associated with the average relative
velocity is important or not).
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Figure (3): Void fraction distribution in pipe bubbly
flow: upward (g=9.81), downward (g=-9.81) and in
micro-gravity condition (g=0.)

In micro-gravity condition, the average relative velocity
between phases is weak and the action of the continuous
phase on the bubbles is reduced to the pressure gradient
effect (Tchen force) and to the turbulent contributions of the
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interfacial force. The pressure gradient effect provokes a
bubbles migration toward the wall and can't explain the
experimental void fraction profile and the introduction of a
supplementary diffusion term proportional to the void
fraction gradient can't invert the void fraction profile. In
return when the turbulent terms issued from the added mass
force are introduced, in our simulation figure (3), the whole
action of turbulence is inverted and the phase distribution
prediction is in good agreement with the experimental data.
This result indicates that the effect of the continuous phase
turbulence on the phase distribution includes, beside the
pressure gradient action (Tchen force), the turbulent
contributions of the interfacial forces. Among these
turbulent contributions, the added mass one is particularly
expected to have the dominant effect.

As compared to the void fraction profile in micro-gravity
condition, the simulations of the void fraction distribution in
upward and downward bubbly flows in normal gravity
conditions clearly show the effect of the lift force. In the
upward flow, the lift force is responsible of the near-wall
void fraction peaking while in the downward bubbly flow,
the lift force action is inverted and the migration of the
bubble toward the centre of the pipe provoked by the global
turbulent action is more pronounced than in micro-gravity
condition.

The figure (4), shows the simulations of the void fraction
profile in boundary bubbly flow with different hypothesis
on the interfacial force. These simulations confirm the
analysis of the importance of the turbulent contribution of

the interfacial force F, on the void fraction distribution and
indicate the effect the lift force F, and of the wall force Fp

on. The adjustment of the coefficients in the expression of
the near wall lift force (24) was tested in this flow
configuration with different bubbles diameter; it yields

C,_=0.08, y;' =l and y, =1.5.
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Figure (3): Effect of Turbulence (Ft), Lift (Fl) and
Wall (Fp) on the void fraction distribution in
boundary layer bubbly flow

These computations allow us to consider that these
coefficients could have a somewhat general character. The
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value of y, indicates that, in most of the two-phase flows
with millimetric bubbles, the wall force is limited to the

logarithmic zone. The value of y:* suggests that the
position of the void fraction peaking is, for the most part,
controlled by lift and wall forces: its value corresponds to
the void fraction peaking position observed in the
experiences of Moursali et al (1995).
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