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ABSTRACT

The behaviour of longitudinal and transverse structure
functions in the far field of a turbulent round jet is
investigated experimentally. Attention is focused on the
scaling exponents of structure functions within the inertial
range. Different initial conditions represented by different
turbulent intensities at the jet nozzle are considered. The
difference between the scaling exponents of longitudinal
and transverse structure functions is found to be almost
independent of the initial conditions. The majority of this
difference depends on the anisotropy of the flow field and
the difference also decreases with increasing Reynolds
number.

INTRODUCTION

It is now a very well know result that the moments of the
velocity difference between two points (the velocity
structure functions, hereafter SF) in a high Reynolds
turbulent flow scale as a power of the distance between the
points (Frisch, 1995). Following the Kolmogorov (1941)
local similarity hypothesis (hereafter K41), the scaling
exponent increases linearly with the moment of the SF.
However, departures from the K41 scaling have been
extensively reported especially for longitudinal structure
functions (LSF), that is for the statistics of the differences
of velocity components along the direction of separation
(see Antonia and Sreenivasan (1996) for a review). Less
attention has been given to transverse structure functions
(TSF) or differences of velocity components orthogonal to
the separation distance. However, especially in anisotropic
flows, a complete investigation of intermittency must

include information from both longitudinal and transverse
directions (also in view of the determination of the scales of
coherent structures in the two directions).

For locally isotropic turbulence of an incompressible flow
the fundamental relation between second-order LSF and

TSF (A, u, ") is given by (Monin and Yaglom, 1975):
rm———— 7 a cna—
Au*,? =(1+-———)A,u* 2 1
r T 2 & L

where 7*=r/n is the normalized separation distance (7 is the
Komogorov length scale =(v3/c)4) and w*=u/vy is the
normalized velocity component along the direction » (v is
the Kolmogorov velocity = (v/g)V/4). Assuming scaling
properties for both LSF and TSF within the inertial range
(1<<r*<<Re3/ 4, where Re is the Reynolds number based on
integral scale), i.e.
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the use of (1) implies that the scaling exponents are related
by
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where C,;t and C,T are the constants involved in the
second-order scaling law. When the same velocity
fluctuations, for example u, is used to form both LSF and
TSF, one would expect that the difference between - and
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&7 should be only small. However, the direction of the
transverse separation is likely to be important. A relation
similar to (1) was derived for the fourth-order SF, using an
empirical approach (Antonia ez al., 1997)

Au*t =(1+: ;)(1+: ;)Aru * 40

This leads to the following relation between fourth-order
scaling exponents
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where C,£ and C,7 are the constants involved in the fourth-
order scaling law. Equations (1) and (3) can be used to
assess which scales conform with isotropy and allow
isotropic values of the transverse exponents to be estimated
from measured longitudinal exponents. These isotropic
values can be compared with the true measured transverse
exponents.

With no intermittency, K41 at large Reynolds numbers
yielded {1 = p/3. Using (2) and (4), C,7/C,F = 4/3 and
C,lICF = (4/3)% so that
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Deviations from (5) due to intermittency appear to be
small (1%-2%). The departure was described by a non-
linear behaviour, for example ;‘pL = p/3-;4p (where the form
of Hp is determined by the selected intermittency model)
(Frisch, 1995). Indeed a small difference should exist
between ¢, 4T and §, F if the arguments of the logarithms
(base r) are different from unity, that is if the ratios C, and
C, are different from (4/3)'l and ( 16/9)‘1. However, these
ratios are usually much more difficult to be derived from
data than the scaling exponents themselves.

An extension of (5) to order p may lead one to conclude
that the absolute magnitude of the scaling exponents of LSF
and TSF are equal (Noullez et al., 1997). However, this
result is not supported by the majority of the available
experimental and numerical data. In particular, there is only
moderate support for (5), while there is much evidence to
suggest that ;pT is smaller than pr (Boratav and Pelz 1997,
Camussi et al. 1997): the difference is of the order of 20%
for p=4 and 40% for p=8. The reason for this inequality
clearly requires further investigation in the context of
improving small-scale turbulence modelling.

There are several candidates to explain this inequality:

1. the anisotropy of the flow field;
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2. the effect of Reynolds number;
3. theinitial and boundary conditions;
4. inherently different intermittencies of LSF and TSF.

The first one seems to be the natural explanation for the
observed differences: to this end the investigation of
relations (1) and (3) can clarify the extent of this effect.

Relatively low Reynolds numbers, shorten the IR: this
problem is particulary felt by TSF leading to bias in the
evaluation of scaling exponents. Indeed, Pearson and
Antonia (1999) found that the difference (JPL-;‘pT)
decreased with increasing Re; (i.e. the Taylor microscale
Reynolds number = Au'/v). Nevertheless, the difference
does not completely vanish even at quite high Reynolds
numbers.

The effect of different initial and boundary conditions has
not been investigated extensively: this leads to different
injections of energy on the large scale which could affect
also the IR. Some contribution should be expected
especially when considering that different authors agree on
a difference between scaling exponents of LSF and TSF but
strongly disagree on the amount of this difference.

The possibility of a different source of intermittency
between LSF and TSF has already been considered by some
authors, in particular through possible differences in scaling
of the locally averaged energy dissipation rate and the
enstrophy. Recent DNS data (Boratav and Pelz, 1997)
revealed that longitudinal velocity differences are mostly
influenced by the former, whereas transverse difference
depend on the latter. From measurements in grid turbulence
(Antonia et al., 1998) at moderate Reynolds numbers, the
scaling exponents of LSF and TSF were inferred from those
of the energy dissipation rate and of the enstrophy. The
resulting differences of 2% for p=4 and 6% for p=8 are
much smaller than measured differences. Incompressibility
could be another source of inherent difference between LSF
and TSF due to the different form of longitudinal and
transverse correlations (Paret and Tabeling, 1998).

The aim of the paper is to estimate the difference ¢,’-¢ 7
in a round jet where the anisotropy due to the large scale
motion is likely to be more important than in grid
turbulence. Moreover, the effect of different initial
conditions is also considered by performing the experiment
on two different jets. LSF and TSF are experimentally
investigated in different regions of the jet flow by applying
Taylor's hypothesis to data from Laser Doppler
Anemometry (LDA) and Hot Wire Anemometry (HWA).
Different Reynolds numbers are also tested.

EXPERIMENTAL SET UP
The far fields at the outlet of two round jets are
investigated. Two different configurations were set-up: an



air-jet (jet diameter = 55 mm, contraction ratio = 10,
Re=Ud/v=1.7><105, Rej=545) where measurements are
made with HWA and a water-jet (jet diameter = 20 mm,
contraction ratio =50, Re=Ud/v=4.4X 104, Re;=~500) where
measurements are made with LDA. Both measurements are
performed at x/d=42 (x being the distance from the nozzle
and d the jet diameter) where isotropy in the IR is expected.
However, the ratio of measured rms axial and radial
velocity fluctuations is still different from unity due to the
anisotropic forcing by the large scales. It is about 1.15 for
the air jet and 1.34 for the water jet. This difference is
expected to reflect the effects of the different initial
conditions. The Kolmogorov scales are #=0.1 mm and vg~
10 mm/s. More than 109 data samples were acquired.

Taylor's hypothesis is then applied to convert the temporal
SF to a spatial SF. LSF is obtained from differences of the
axial velocity component in time, whereas TSF is derived
from differences of the radial velocity component in time.
The LDA data are resampled using a zero-order
interpolation to obtain equispaced data sets: at this rather
high Reynolds number, this resampling does not affect the
behaviour in the inertial range (Antonia et al. 1997,
Romano et al. 1999).

In order to check that some of the disagreement between
existing data, especially for { 3T , may be due to the way the
IR is identified, different procedures are considered:

1. evaluation of the IR as the range where the third-order
LSF (p=3) increases linearly with 7* (£, = r*, which
is an exact result from the Navier-Stokes equations in
isotropic turbulence): the scaling exponents of other (p
#3) structure functions are computed by fitting data in
this range (also applies to transverse exponents);

2. evaluation of the IR as the range where the third-order
LSF increases as r*. The scaling exponents of the
other longitudinal structure functions are computed by
fitting data in this range, while the transverse scaling
exponents in the range where ¢ 3T = p* (this is only
empirical and not based on Navier-Stokes equations);

3. evaluation of scaling exponents by using the Extended
Self Similarity (ESS) (Benzi et al. 1993), that is by
plotting the pth-order structure function versus the 37-
order moment of the absolute increment and
identifying the range where the behaviour is linear (on
a log scale). ESS can be applied in method 1 (to both
longitudinal and transverse) and 2 (only longitudinal).

Using procedure 1, the IR is evaluated to be from r*~50 to
r*~130 for the HWA measurements in the air jet and from
r*~20 to »*~110 for the LDA measurements on the water
jet. Once the IR is established, the scaling exponents are
computed using procedure 3. LDA measurements have been
performed also at Re=2x10° (Re;~1100).

o—o trans. (eq.1) /trans.
——— transverse (eq.1)

----- transverse
longitudinal
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Figure 1. Second-order LSF and TSF from HWA
measurements. The second-order TSF is also
obtained from equation (1). Theoretical slopes in

dissipative and inertial ranges are also shown.
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Figure 2. Fourth-order LSF and TSF from HWA
measurements. The fourth-order TSF is also obtained
from equation (3). Theoretical slopes in dissipative
and inertial ranges are also shown.

RESULTS ON STRUCTURE FUNCTIONS

In figure 1, the second-order LSF and TSF are given for
the HWA measurements in the air jet. In the same figure,
the second-order TSF obtained using equation (1) is also
given. The data on LSF seem to approach the theoretical
predictions in the dissipative range and IR (without
intermittency corrections), whereas the TSF shows a
smaller slope in the IR. The TSF, from equation (1),
approaches the measured TSF reasonably well, although
with a slope in the IR which is close to that for the LSF.
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In figure 2, the fourth-order LSF and TSF are given for the
HWA measurements in the air jet together with the fourth-
order TSF obtained using equation (3). Again, LSF
reproduces the theoretical predictions in the dissipative
range and IR (without intermittency), but TSF exhibits a
slope significantly smaller than LSF in the IR. The TSF,
obtained using equation (3), is close to the observed LSF.

From such functions, scaling exponents are computed
using procedure 1. Second and fourth-order scaling
exponents in the air and water jets are summarized in table
1, together with results obtained by Camussi et al. (1997)
in a jet flow (x/d = 20, Re, =~ 250). For these data, the

transverse exponents are evaluated using procedure 2. The
differences between longitudinal and transverse exponents
already reported by other authors are observed (about 15%
for second-order and 20 % for the fourth-order). However,
when transverse exponents are computed from the TSF
obtained using equations (1) and (3), the difference is
strongly reduced (within 5% for both second and fourth-
orders). To this end, it should be noted that equations (1)
and (3) are valid for locally isotropic turbulence and that
intermittency effects in LSF are transferred to TSF.
Therefore, our results indicate that a large part of the
observed differences between scaling exponents of LSF and
TSF is due to local anisotropies which affect the IR.

Some difference is also observed between exponents
obtained from the air jet (HWA) and the water jet (LDA),
the latter being always smaller than the former. The
difference between longitudinal exponents is about 3%,
compared to about 9% for the transverse exponents. In the
water jet, the difference between longitudinal and
transverse exponents is higher than in the air jet. The ratio
between these differences is

L T
(§2,4 624 )w
L T
(§2,4 — G624 )a
which is also equal to the ratio between the mean squared

velocity fluctuations due to the different initial conditions
for the two jets

~135-14,

W@2) 13ay
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a

Therefore, the two experimental conditions exhibit
differences between the longitudinal and transverse
exponents which are also dependent on the initial
conditions through the ratio of fluctuations between the
longitudinal (axial) and transverse velocity components.

Scaling exponents of p™-order (up to 8) LSF and TSF are
computed and given on figure 3. In the first part, the data
are compared with those of Camussi ez al. (1997).
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20_order | 4t-order
AL(HWA) 0.713 1.303
L HWA) 0.638 1.102
T(HWA) (eq. 1,e9.3) | 0.679 1.281
(LDA) 0.711 1.261
T (LDA) 0.584 0.990
T (LDA) (eq. 1, eq. 3) 0.698 1.224
£L (Camussi et al., 1997) | 0.70 1.27
£ (Camussi et al., 1997) | 0.72 1.24

Table 1. Second and fourth-order scaling exponents
of LSF and TSF obtained from HWA and LDA
measurements. Equations (1) and (3) are also used to
evaluate the transverse exponents.

25
3 log-normal . --~
20 K41 2
P 4
15
10
2A——a transverse (Camussi et al.) (2
* — - longitudinal (Camussi et al.) (1)
05 v—% HWA (air jet) transverse (2)
o——o HWA (air jet) transverse (1)
0——o HWA (air jet) longitudinal (1)
0
0 2 4 6 8 10
p
25
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10
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05 #—= LDA (water jet) transverse (2)
v—— HWA (air jet) transverse (2
o——e HWA (air jet) transverse (1)
o———o HWA (air jet) longitudinal (1)
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Figure 3. Scaling exponents of LSF and TSF obtained
from HWA and LDA measurements. The number in
brackets refers to the procedure used for evaluating
the IR. The Camussi et al. (1997) data and the
theoretical K41 and log-normal results are also shown.



In the second part of figure 3, the air jet (measured using
HWA) and the water jet (using LDA) are compared. In the
figure, both procedures 1 and 2 are used to evaluate the IR
There is fairly good agreement between all longitudinal
scaling exponents, irrespectively of initial conditions,
Reynolds number and large scale anisotropy.

On the other hand, differences are observed in the
transverse scaling exponents. The evaluation of scaling
exponents for TSF, using an IR derived from third-order
TSF (procedure 2), results in a decrease of the difference
between longitudinal and transverse exponents (as in the
data by Camussi ez al., 1997). The IR from third-order LSF
and TSF is indicated on figure 4 for the LDA data (the SF
is divided. by »*). This IR (constant using this type of plot)
is between r*~20 and r*~110 for LSF, while the region
where the third-order TSF is constant is much smaller
(approximately between r*~15 and r*~30). When such a
"transverse" IR, is used also for TSF, the present results
(for both HWA and LDA) agree with those of Camussi ez
al. (1997). This highlights the fact that the evaluation of the
IR is crucial for investigating TSF scaling exponents.
However, we want to stress that procedure 2 is not
supported by any theoretical argument and that the IR
should be determined from the third-order LSF.

In the second part of figure 3, a comparison of scaling
exponents between the two jets is shown. As for second and
fourth-orders, the major difference is felt on transverse
exponent. This difference changes with the order p, but
slowly. It also depends on the procedure used to evaluate
transverse exponents. This fact confirms that some of the
existing difference in the evaluation of transverse exponents
depends on how the IR is selected. However, it is somewhat
surprising that this difference disappears when procedure 2
(without theoretical basis) is used.

The relative difference between longitudinal and
transverse exponents is given in figure 5. For almost all
data, it increases linearly with order p. The slope for the
present data is about 0.03 (so a 3% increase for each step in
p). This slope is slightly higher (about 0.035) when
procedure 2 is used, and smaller (about 0.027) for
procedure 1. On the other hand, a few differences are
observed between slopes from the LDA and HWA data
(less than 3%). The slope from Camussi et al. (1997) is
definitely smaller than that for the present data (about
0.02). The data nearly collapse on a single curve when
"erroneous"” procedure 2 is used and the difference between
longitudinal and transverse exponents is almost 5% for p<4
and within 10 % up to order p=8.

To evaluate the effect of the Reynolds number, the water
jet measurements were repeated at a higher Re, (about

1100). In figure 6, the relative difference between
longitudinal and transverse scaling exponents is given for
different Reynolds numbers.
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Figure 4. Third-order LSF and TSF divided by r* from
LDA measurements. The IR, determined from the
third-order LSF, is also shown by vertical dotted lines.
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Figure 5. Relative difference between exponents of

LSF and TSF. The number in brackets refers to the
procedure used for evaluating the IR.

Except for the data of Camussi et al. (1997), whose initial
conditions and turbulence fluctuation levels are not known,
there is a clear trend which supports a reduction in the
relative difference as the Reynolds number increases.
However, even at the highest Reynolds number, the
difference does not vanish if procedure 1 is used to evaluate
the IR. On the other hand, using procedure 2, the difference
vanishes and the transverse scaling exponents are even
higher than the longitudinal. Further evidence for the
decrease with increasing Re, in the relative difference

between scaling exponents will be presented at this
conference (Pearson and Antonia, 1999) in the context of a
wide range of flows.
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CONCLUSIONS

The differences between scaling exponents derived from
longitudinal and transverse structure functions of velocity
(LSF and TSF) are investigated experimentally in round
jets. These differences are supposed to depend on the
anisotropy of the velocity field through the:

— large scales (caused by different initial conditions);
— inertial range (IR) (caused by "local" deformations);
— small scales (through changes in Reynolds number).

These three sources are investigated in the present paper. In
all tests, as reported by many authors, the longitudinal
scaling exponents show negligible variations. Therefore, the
attention is focused on transverse scaling exponents.

The determination of the IR is a crucial point for the
evaluation of such exponents (and also accounts for some of
the discrepancies between existing results). Although the
use of the third-order LSF is the only one supported by the
equations, surprisingly the use of third-order TSF allows
the present data to collapse on a single curve, at least for
small order p.

The effect of initial conditions is investigated by
measuring SF in air and water jets with different
longitudinal to transverse rms velocity fluctuation ratios.
Transverse exponents differ from longitudinal exponents in
both jets, although the difference is reduced as the ratio
approaches unity.

The effect of anisotropy on the IR is determined by using
relations, valid for a homogeneous, isotropic and
incompressible flow, for second- and fourth-order SF which
enable TSF to be obtained from LSF. In this way, the
difference between longitudinal and transverse exponents is
reduced within 5% in all tests. We stress that the fourth-
order relation is only empirical and needs further testing.
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