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ABSTRACT

Processing procedures based on the continuous
complex wavelet transform are applied to the analysis of
velocity signals obtained in a developing turbulent flow.
It is shown that the frequencies contributing to the energy
and to the Reynolds stresses may be characterized better
than with Fourier analysis. Indeed, the time variation of
the contribution of the different frequencies to the energy
of the fluctuations and to the Reynolds stresses may be
singled out, so that it may be ascertained if these
contributions are simultaneous or alternative, continuous
or intermittent. In particular, it is shown that in certain
positions at the end of the potential cores of a coaxial jet
high energy fluctuations, probably connected to the
passage of rolled-up vortical structures, may produce low
values of the Reynolds stress because their contribution
to correlation oscillates in time between positive and
negative values. Examples of the application of different
types of wavelet dynamical filters are also given, and a
wavelet local correlation coefficient is defined.

INTRODUCTION

The wavelet transform allows a signal to be described
by means of oscillating, zero-mean, base functions of
compact support, i.e. whose values are zero or negligible
outside a certain time interval, which defines the “scale”
of the wavelet. By a process of convolution of the signal
with dilated versions of these basic wavelets, the wavelet
transform coefficients provide an evaluation of the
“instantaneous” similarity of the signal with wavelets of
different scale. By appropriately connecting scales and
inverse frequencies, it is thus possible to obtain the time
variation of the contribution of the different frequencies to
various physical quantities connected with the signal

(e.g. its energy or its correlation with another signal).
This analysis is particularly suited when the fluctuations
of a signal derive, rather than from the sum of infinite
sinusoidal waves, from the sum of finite “events”, i.e.
when the signal is intrinsically intermittent, as is indeed
the case for most turbulent velocity fields.

The theory of wavelet transforms, both continuous and
discrete, has been thoroughly developed in recent years
(see Daubechies, 1992), and applied in different fields of
physics and engineering. Several applications of the
wavelet transform to the analysis of turbulent velocity
signals are present in the literature (see, e.g., Farge et al.,
1996). In most of these applications, wavelet-based
procedures are used to enhance the flow field structures
containing most of the turbulent energy, to evaluate their
scales and to characterize the degree of intermittence of
their occurrence.

Cross-correlation techniques based on the continuous
complex-wavelet transform have also been introduced
(Onorato et al., 1997), and tested by processing velocity
signals obtained from axisymmetric direct numerical
simulations of a coaxial jet flow at low Reynolds numbers.
By applying these procedures to the signals representing
two velocity components simultaneously obtained at the
same point of the flow, it was possible to derive the time
variation of the contribution of the single scales to the
relevant Reynolds stress. Thus it could be ascertained
whether a certain value of the Reynolds stress at a point of
the flow was produced by an almost time-constant
contribution, or by an intermittent one.

The main object of the present paper is to study the
performance of these and other wavelet-based techniques
for the analysis of experimental turbulent velocity signals
obtained at higher Reynolds numbers than those
attainable through DNS.
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GENERALITIES ON WAVELET TRANSFORMS

A wavelet can be any real or complex valued function
y(t) e L? of compact support that satisfies the following
admissibility condition:

C, = ﬂlf/(a))|2|a)]_ldw < o 1)

where Cy, is the admissibility constant, and (@) is the
Fourier transform of w(z). This condition implies, in
practice, that y(?) has zero mean value.

The continuous wavelet transform of a function f{?) is
defined as the convolution between fand dilated versions

of the wavelet:
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where a € % is the scale dilation parameter, T€ 9 is the
translation parameter corresponding to the position of the
wavelet in the physical space, and the symbol * indicates
the complex conjugate.

The wavelet functions are not orthogonal and the
continuous transform is highly redundant, but, thanks to
the admissibility condition, an inversion formula exists to
recover f(t) from its wavelet coefficients (Daubechies,
1992). In the present study the complex Morlet wavelet
(y(¢) = eiwgte-t2/2) is used. Although this wavelet does
not exactly satisfies (1), if we take @, = 6 it becomes
admissible and progressive (i.e. with (@) =0 for ® < 0)
within typical computer round-off accuracy. It is possible
to relate scales and frequencies, and for the Morlet wavelet
this relation is f = wy/(2ma).

From the wavelet transform one obtains time-scale maps
(scalograms), giving e.g. the modulus and phase of the
transform (if the wavelet is complex).

Let Wia,7) and Wg(a,7) be, respectively, the wavelet
transforms of f{¢) and g(t) We define the wavelet cross-
scalogram as follows:

Wyta) = = 16
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When the analysing wavelet is complex, Wy (a,7) is also
complex; if CoWg(a,7) is its real part (co-scalogram), it
can be shown that (Onorato et al., 1997)

fgt)dt = (1/C, )| |CoWp(at)drdalaz  (4)
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If f= g, relations (3) and (4) show that the square
modulus of the wavelet transform gives the contribution of
each scale to the energy of the signal as a function of time.
On the other hand, if f{(#) and g(?) are two components of
the velocity fluctuation at a certain point of a turbulent
field, the co-scalogram can be used to detect time intervals
and scales at which the contribution to the relevant
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Reynolds stress is significant. Also, for each scale
(frequency) the angle of phase between the two signals
may be found as a function of time (Onorato et al., 1997).

By integrating in time the functions |W(a, 1)|Z/Cu, and
CoWp(a,1)/Cy  we obtain, respectively, the wavelet
power spectrum and the wavelet co-spectrum, which are
smoother versions of their Fourier counterparts, being
averages weighted by the power spectrum of the wavelet
filter (Onorato et al., 1997, Perrier et al., 1995).

Once the different wavelet scalograms are available,
their cross-sections at constant scale may be treated as
time varying signals, and processed in order to extract
more information on the behaviour of the flow. For
instance, their statistical moments may be evaluated, as
well as their correlation with different cross-sections of
the same or of other scalograms (Li, 1998). Furthermore, by
using thresholding procedures on a scalogram, masks may
be produced and applied to the same or different
scalograms. Thus different filters and conditional statistics
may be obtained, having different physical meaning
according to the used scalograms.

EXPERIMENTS AND ANALYSES

Processing techniques based on the complex Morlet
wavelet are used in the present paper to analyse velocity
signals obtained in a coaxial jet flow in a previous
experimental investigation, described in more detail by
Buresti et al. (1998). The analysed configuration has inner
to outer jet diameter ratio Di/D, = 0.5 (D, = 155 mm), a
velocity ratio U/U, = 0.30, and a sharp inner duct wall
outlet. The outer jet velocity is U, = 4 m/s, giving a
Reynolds number Re = U,Dy/v = 4.2 x 10%. In this flow
condition, the potential cores of the two jets have
comparable length, of the order of 3 D;.

The axial and radial velocity components, # and v, were
measured by means of X hot-wires placed inside the inner
and outer shear layers, at several axial positions
downstream of the jet outlet. Flow visualizations were
also obtained using a pulsed Nd-YAG laser, by seeding
the outer jet, and used as a guide in the interpretation of
the analyses of the velocity signals, particularly as
regards the role of the dynamics of the different vortical
structures present in the near-field. Several methods of
analysis based on the wavelet transform were used, viz.:

- Wavelet spectra and co-spectra, to determine the
frequencies most contributing to the energy of the
fluctuations and to the Reynolds stress production.

- Filtering of the energy maps through a filter mask based
on suitable thresholding of the co-scalogram, to single
out the portions of the velocity fluctuations most
contributing to the Reynolds stresses.

- Introduction and analysis of the maps of a Wavelet Local
Correlation Coefficient, defined as the ratio between the
real part and the modulus of the relevant cross-scalogram:
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WLCC(a, 1) gives the local contribution of each frequency
of the # and v fluctuations to their correlation coefficient.
- Application of a filter mask based on the modulus of the
cross-scalogram |W,,(a,7)| to the maps of WLCC(a,1), and
evaluation of the conditional statistics of their sections.

RESULTS

Figure 1 shows examples of the flow visualizations, viz.
three instantaneous shots and the image obtained as an
average of the whole set of acquired images. Different
vortical structures are seen to be present at different times
in the inner and outer shear layers, which may or not be
synchronized and which are often characterized by a
significant three-dimensionality. For sake of brevity, only
the analyses of the velocity signals obtained at the two
points shown in Fig. 1d) will be described. Both points
are well within the inner shear layer, and the second one
is at the end of the potential cores of the two jets, a highly
turbulent region where little information on the vortical
structures can be derived from the visualizations.

Figure 2 shows, for point 1, the scalograms of the energy
of the # and v fluctuations and their co-scalogram, limited
to the frequency range containing appreciable values.

Dj

Energy is seen to be prevailingly present around two
frequencies, viz. 29 Hz and 81 Hz, even if with differences
in relative importance in the two velocity components.
Contributions to the v component energy are also present
around 112 Hz, almost alternatively to those around
81 Hz, but, as can be seen from the co-scalogram, they give
a limited contribution to the u-v correlation. Actually, a
closer look at the maps shows that even the dominating
frequencies, if derived from the local maxima of the maps,
vary in time within small bands. This is physically
explainable, considering that the distance between the
vortices belonging to the same “family” is not exactly
constant in time. Therefore, here and below, reference will
be made to average dominating frequencies, generally
coinciding with the maxima in the spectra or cross-spectra.

The integration in time of the maps of Fig. 2 produces
the spectra and the co-spectrum of Fig. 3, which show the
clear difference in relative energy content at the two
dominating frequencies for the two velocity components,
and the prevailing contribution of the higher one to their
correlation. Also shown in this figure are the filtered
energy spectra obtained by applying to the energy maps a
mask derived by thresholding the absolute values of the
co-scalogram with a threshold equal to 150% of the map

Figure 1. Examples of flow visualizations.

* Point 1: x/Di = 1.0, r/Di = 0.5;

+ Point 2: x/Di = 3.0, r/Di = 0.4.
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Figure 2. Scalograms of the energy of u (a) and v (b), and u-v co-scalogram (c). Point 1.

global average. Therefore, the filtered spectra indicate the
portion of energy contributing most to the Reynolds
stress; as can be seen, the filter acts prevailingly on the
lower frequency for the u component, and on the
frequencies above the higher peak for the v component.

As ascertained from the visualizations, and also from the
analysis of the more downstream points, the two peaks in
the spectra of Fig. 3 are linked to different “trains” of
vortices that alternatively occur in the inner shear layer.
The higher frequency peak corresponds to vortices
deriving from a primary instability of the shear layer, as
was verified by considering the Strouhal numbers based
on the estimated thickness of the boundary layers at the
jet exit. Conversely, the lower frequency scales on the jet
core length, becomes more and more dominating moving
downstream, and then undergoes the expected process of
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subharmonic enhancement connected with the mechanism
of vortex pairing.

This interpretation agrees with the results obtained at
x/D; = 2.0 (not shown here), and with those of point 2, for
which we show in Figure 4 the wavelet cross-spectrum
and co-spectrum. In this position no significant energy is
present around 81 Hz, the peak around 29 Hz has
broadened significantly (in connection with a more
intermittent and variable appearance), and a new peak
around 15 Hz has appeared. It is most remarkable that only
the latter peak dominates the co-spectrum, and thus
contributes to the correlation. Obviously, the action of
the filter based on the u-v co-scalogram is now prevailing
on the higher frequency; however, the filtering action
seems to be less than might have been expected from the
negligible values of the co-spectrum at this frequency.
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Figure 3. Wavelet energy spectra of u and v, and
u-v co-spectrum for point 1.
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Figure 4. Wavelet u-v cross-spectrum and
u-v co-spectrum for point 2.
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Figure 5. Sections of the u-v cross-scalogram (a) and u-v co-scalogram (b) at the dominating frequencies. Point 2.

The reason for this result becomes clear when one
analyses the sections of the cross-scalogram and of the co-
scalogram at the two dominating frequencies (Figure 5).
Indeed, the contribution of the energy at 15 Hz to the co-
scalogram is practically always negative; conversely, the
energy at 29 Hz produces both positive and negative
peaks in the co-scalogram, and this gives an appreciable

contribution to the filter mask based on the absolute
values, but an almost negligible time integral value.

A further confirmation and a quantitative assessment of
this behaviour may be obtained by analysing the sections
of the WLCC maps at the dominating frequencies, which
give the time variation of the relevant contribution to the
correlation coefficient.
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Table 1
Statistics of the WLCC maps_sections

Point 1 Global values Filtered values
f (Hz) Mean RMS Mean RMS
29 -.580 .487 -.737 228
81 -.745 .352 -.835 .176
Point 2 Global values Filtered values
f (Hz) Mean RMS Mean RMS
15 -.644 .469 -.833 215
29 -.033 .687 -.048 .684

Table 1 shows, for the two analysed points, the mean
and rms values of WLCC, evaluated both considering the
complete sections at the dominating frequencies and the
portions of the sections remaining after filtering with a
mask obtained by thresholding the modulus of the cross-
scalogram (threshold level = 150% of the map average),
thus excluding the contribution to WLCC of low-energy
fluctuations. The mean values give the contribution of the
considered frequencies to the correlation coefficient, and
should be compared with the correlation coefficients of the
complete u and v signals, which are —441 for point 1 and
—332 for point 2. The different behaviour of the
dominating frequencies for the two points is clear from the
table. Particularly striking is the fact that, while in
general the effect of the filter is to increase the mean value
and to reduce the rms one, this does not happen for the
higher frequency of point 2. Moreover, the contribution of
this frequency to WLCC is characterized by a negligible
mean value and by a very high rms value.

All these results may be given a physical interpretation
by referring to the previous findings of Onorato et al.
(1997), who observed that high values of the u-v
correlation are present in the roll-up and pairing regions,
where the vorticity structures are inclined to the flow. On
the other hand, the passage of almost round rolled-up
vortices, although giving rise to high velocity
fluctuations, produces axial and radial velocity signals
that are generally nearly orthogonal. Thus, from the
present analyses one may infer that in point 2 the 15 Hz
frequency is probably connected with pairing vortices.
Conversely, the oppositely-signed contributions of the
29 Hz frequency to the u-v correlation are consistent with
the passage of vortical structures with an irregularly
round shape, and thus having a prevailing inclination
which changes almost randomly from the positive to the
negative direction with respect to the flow.

CONCLUSIONS

The results of the present analyses confirm that
processing procedures based on the wavelet transform may
be a useful tool for the analysis of experimental velocity
signals acquired in a developing turbulent flow. Indeed,
they allow the contribution of different frequencies to
various statistical quantities to be followed in time. It is
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thus possible to ascertain if frequencies contributing to
the energy of a velocity fluctuation also contribute to the
correlation with another velocity component. Moreover,
one may verify if a low Reynolds stress value derives from
a continuously small contribution to correlation or from
an intermittent one, oscillating between positive and
negative values. This may give clues on the dynamics of
the vortical structures dominating a certain flow, and on
the evolution of the consequent mixing processes.

In this paper the interpretation of the results was guided
by the experience gained from a previous DNS of the same
coaxial jet at lower values of Re. In particular, the different
contributions of the various frequencies to energy and
Reynolds stresses were found to be consistent with their
connection with the dynamics of the vortical structures
that had been found from the numerical simulations.

In conclusion, the time-frequency information provided
by the wavelet analysis seems to be promising for
devising methods to recognize flow features that are not
evident from a conventional Fourier analysis. Eventually,
this might hopefully lead to the definition of procedures
to characterize flows with different degrees of turbulence
development, and help in the derivation of more realistic
models of turbulence.
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