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ABSTRACT

Flow topology techniques are applied to a large eddy
simulation database of a square annular duct. The he-
licity density as well as the topology of the eddying
motions are calculated as a function of time over the re-
gion of flow surrounding one of the inner duct corners.
Turbulence structures are identified from the resulting
isosurface plots. The structures are formed along the
inner wall near the corner, and then transported diago-
nally away from the inner duct where they are stretched
in the downstream direction by the mean flow field.

1. INTRODUCTION

Turbulence structures in a confined flow ought to be
affected by the geometry of the enclosure. In the case
of a square annular duct (see Figure 1), the evolution
of the turbulence structures in the vicinity of the sharp
corners of the inner duct will be significantly different
from that in other areas of the flow field. The purpose
of this study is to investigate how and where turbulence
structures are formed along the inner walls of a square
annular duct. It is expected that the presence of sharp
outside corners of the inner duct will cause the flow
field to be significantly different from that of a square
duct without an annulus. Structures generated on the
outer surface of the inner duct will be transported by
the secondary flow patterns towards the corners of the
outer duct. The effect of the mean velocity field will be
significant, causing the structures to be transported in
the downstream direction as well; thus the turbulence
structures will be three-dimensional in nature.

A square annular duct was investigated by Xu and
Pollard (1997) using a temporal large eddy simulation.
They observed strong counter-rotating vortex pairs
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close to the walls of the inner duct by using the time-
averaged velocity and vorticity quantities obtained from
the simulation. While time-averaged data do provide
useful information about the overall behaviour of the
flow field, instantaneous data must also be examined in
order to trace the development of turbulence structures.
In the present study, flow topology techniques are used
to examine the instantaneous quantities from the Xu
and Pollard database to determine how the presence
of a sharp inner corner affects the turbulent flow field.
This includes an examination of the helicity density of
the flow field, as well as the topology of the eddying
motions as described by Chong et al. (1998).

2. NUMERICAL SIMULATION

The Xu and Pollard database was created from a
large eddy simulation of a temporally-evolving incom-
pressible turbulent flow in a square annular duct. In
a large eddy simulation, the large turbulence motions
of the flow are directly calculated, while the smaller
motions are modelled through a subgrid scale model
to obtain a turbulent viscosity, v¢. A large eddy sim-
ulation uses the following forms of the continuity and
Navier-Stokes equations:
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where u; are the components of the velocity vector in
the z; direction, corresponding to the z, y, and z co-
ordinates.

The dimensions of the modelled duct were normal-
ized by the half the width of the inner annulus, h. The
outer duct was 4h X 4h wide in the normal (y) and
spanwise (z) directions, and 16mwh long in the stream-
wise (z) direction. The Reynolds number of the flow,
based upon the frictional velocity, was Re, = 200. A
fractional step method proposed by Kim et al. (1985)
was used to achieve velocity-pressure coupling with a
second-order accurate time advancement scheme. The
timestep used in the simulation, normalised by h/U,
where U, is the mean frictional velocity, was 5 x 1074,
which maintains a CFL number below 0.5. The equa-
tions were discretized in space using a second-order fi-
nite volume method. Approximately 400,000 control
volumes were used on a non-uniform grid. Initial con-
ditions were constructed from a fully developed laminar
velocity profile upon which disturbances that are solu-
tions to the Orr-Sommerfeld equations were imposed.
Complete details of the computations can be found in
Xu and Pollard (1997).

In the Xu and Pollard database, the Smagorinsky
subgrid scale model was used to model the turbulent
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viscosity,
vt = Rer(CsDyenA)?(25:58:5)™° (3)

where A is the average cell size, S;; is the symmet-
ric rate of strain tensor, and the Smagorinsky constant
Cs = 0.10. The Smagorinsky model does not provide
for damping of the larger scales of turbulence motion in
the near-wall region of flows; thus a damping co-efficient
Dy¢cn must be introduced. For the square annular duct
simulation, the van Driest wall damping function was
applied in two dimensions,

b= -ean (-2)]| [r-eon (-2)] 0

where y* and z* are the distances from the nearest
wall, in wall units. The Smagorinsky model has been
used fairly successfully to predict the behaviour of tur-
bulent flows having low Reynolds numbers. This may
be due to its ability to predict the global energy trans-
fer adequately even if the local transfer is incorrect, Pi-
omelli (1993). Therefore, the mean quantities reported
by Xu and Pollard should be reliable. However, the
shape of the instantaneous flow structures examined
here using flow topology techniques may not be com-
pletely accurate.

3. FLOW TOPOLOGY

3.1 Helicity Density
The helicity, H, is defined as the dot product be-
tween the velocity and vorticity vectors,

H=V.Q (5)

where § is the vorticity defined by § = V x V, see Mof-
fat (1969). It is a measure of the transport of vorticity
by the velocity field; that is, the movement of the the
flow structures downstream in a screw sense. The quan-
tity may be either positive or negative, depending on
the orientation of the vectors. The quantity examined
in the present study has been normalised

H=
I

to yield a helicity density.

(6)
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3.2 Topology of Eddying Motions

The geometry of the streamline pattern close to any
point in the flow can be classified by studying certain in-
variants of the velocity gradient tensor, A;; = Jui/0z;,
at that point, Chong et al. (1998). The characteristic
equation of A;j is

MN4+PN+QA+R=0 (7)

where A represents the eigenvalues, and P, @, and R
are the tensor invarients,

P =—tr(A) (8)



Qy>Qq
complex eigenvalue solutions

Qs> Qy
all real eigenvalue solutions

Figure 2: Discriminant D = 0 separating regions of
Q — R space with complex solutions to the charac-
teristic Equation 7 from those with all real solutions

Q= 3(P* - tr(A%) )

and
R = —det(A) (10)

For incompressible flow, P = 0. The discriminant, D,
which describes the surface that divides flows with com-
plex eigenvalues from those with all real eigenvalues is,
Chong et al. (1990)
D= 24—732 +Q° (11)

For regions of the flow where D > 0, the characteristic
equation admits two complex and one real solution for
A, and the point is classified as a focal region. When
D < 0, the solutions to the characteristic equation are
all real, and the associated pattern is referred to as a
node-saddle-saddle point. A plot of @ — R space and
the location of the line D = 0 is given in Figure 2.

It is possible to obtain a physical understanding of
Q — R space by splitting the velocity gradient tensor
into two components, Chong et al. (1990):

Aij = Sij + Wij (12)

where S;; is the symmetric rate of strain tensor and W;;
is the skew symmetric rate of rotation tensor. These are

given by
s =L (0uw 0w
SIJ - 2 (amj + 0.1‘1) (13)
and 5 0
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The invariants of Si; (Ps, @s, and Rs) and Wi; (Pw,
Qw, and Rw) can be defined in an analogous way to
the invariants of A;j. For incompressible flow,

1
Qs = —55i5i (15)

and 1
Qw =3
Thus, Qw must always be positive; Qs must always be
negative. It can be shown that

WijWij (16)

Q=Qw +Qs = %(WijWij — Si;Sij) (17)

Therefore, areas of the flow where the rate of strain ten-
sor is dominated by the rate of rotation tensor (Qw >
Qs) correspond to positive values of @ in Q — R space,
or locations where the velocity gradient tensor A;; has
complex eigenvalues, Chong et al. (1990). Thus, iso-
surfaces of constant positive D in the flow field en-
close concentrated bundles of vortex lines. Areas of the
flow where Qs > Qw correspond to negative values of
D. Turbulence structures, when defined as vorticies in
which the rate of rotation tensor dominates the rate
of strain tensor, can be identified from plots of isosur-
faces of constant positive values of D. Blackburn et
al. (1996) found that plots of isosurfaces of constant D
were superior to plots of isosurfaces of enstrophy den-
sity or dissipation of kinetic energy for isolating clear,
well-defined structures.

Chong et al. (1998) and Blackburn et al. (1996) have
applied this method to the databases obtained from
several direct numerical simulations. However, it is im-
portant to note that the results to be presented in the
present study are limited due to the coarse resolution of
the computational grid from the large eddy simulation
compared to that of direct numerical simulations.

4. PRESENTATION AND DISCUSSION OF
RESULTS

Three-dimensional plots showing isosurfaces of flow
topology features for the entire flow field result in a
large number of features which are difficult to inter-
pret. To simplify the plots, only the portion of the flow
filed described by (7.77 < z < 8.7m; 0.67 < y < 1.30;
0.67 < z < 1.30) is presented here. This corresponds to
the region of flow surrounding the top left corner of the
inner duct shown in Figure 1. The grid resolution in
this portion of the flow domain is 8 x 16 x 16 control
volumes. For the flow topology analysis, a total of 100
plots were examined at every 10 timesteps between 39.0
and 39.5 non-dimensional time units into the large eddy
simulation. Data from two instances in time are pre-
sented here, and are representative of the data observed
throughout this time period.

The secondary velocity pattern observed by Xu and
Pollard is reproduced in Figure 3 for the region of flow
surrounding the upper left corner of the inner duct.
Here, the velocity data have been averaged both in time
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Figure 3: Time-average secondary flow vectors at
the inner corner of a square annular duct

and in the z direction. The vorticies next to the inner
duct accelerate fluid along the wall towards the corner,
and then diagonally out away from the inner duct. The
same flow pattern is evident at all four corners.

Isosurface plots of helicity density at 39.175 and
39.230 non-dimensional time units into the large eddy
simulation are shown in Figures 4 and 5, respectively.
The inner duct is located in the bottom right corners of
these plots. The downstream direction of the mean flow
field is out of the paper towards the viewer. The regions
of flow with the greatest absolute values of helicity den-
sity are negative, corresponding to flow with a clockwise
rotation. This agrees with the direction of rotation of
the vorticies shown in Figure 3. The helicity density
plots highlight turbulence structures, corresponding to
areas of high vorticity and hence high absolute helicity
density, being transported downstream with time. One
such structure, labelled Structure 2, can be observed
at the top of Figure 4, mid-way along the z-axis. In
Figure 5, the same structure has been transported to-
wards the front of the plot. Both Figure 4 and Figure 5
indicate that structures in the region of flow diagonally
above the corner of the inner duct are stretched in the
downstream direction.

The plots of isosurfaces of helicity density outline the
turbulence structures in regions of the flow where the
absolute value of the velocity vector is relatively high.
This corresponds to locations where most of the trans-
port of vorticity is taking place. However, the plots
do not indicate where the structures are formed along
the inner duct wall since the magnitude of the velocity
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vector is small in that region of flow.

Plots indicating isosurfaces of positive and negative
values of the discriminant D are shown in Figures 6
and 7 for the same two instances in time: 39.175 and
39.230 non-dimensional time units into the large eddy
simulation. The plots are oriented in the same man-
ner, with the inner duct located in the bottom right
corners. Regions of flow with positive values of D, ie.
where the strain tensor is dominated by the rotation
tensor, are associated turbulence structures described
by vortex bundles. The discriminant plots do not ex-
hibit the smooth isosurfaces that were observed in the
helicity density plots. The shape of the vortex bundles
can change significantly from one timestep to the next,
although the general location of regions of pisitive D in
the flow field remains relatively constant. This may be
due, in part, to the coarse resolution of the large eddy
simulation grid. Even though the shapes of the vortex
bundles are not identical to those highlighted by the he-
licity density plots, regions of flow with a positive dis-
criminant are associated with regions of high absolute
helicity density. However, the reverse does not apply.
In Figure 6, two large vortex bundles can be observed
which correspond with regions of high absolute helic-
ity density shown in Figure 4: at the front centre of
the plot (Structure 1); and near the top left corner of
the plot, mid-way along the z-axis (Structure 2). How-
ever, the structure observed mid-way along the z-axis
in Figure 5 (Structure 3) does not appear in Figure 7.
Investigation of additional topological parameters may
be required to understand why this occurs.

The discriminant plots clearly show structures form-
ing along the inner duct wall near the sharp corner.
Figure 6 indicates a vortex bundle along the top of the
inner duct wall (Structure 1) which separates from the
wall at the corner, and then expands outwards diago-
nally towards the upper left corner of the plot. A differ-
ent structure, Structure 2, shown at the front of Figure
7, is smaller and is attached to both walls close to, but
not right at, the corner of the inner duct. It appears
to be breaking up into smaller vortex bundles. Exam-
ination of data at later time points indicates that this
does indeed occur, and the smaller vortex bundles are
then transported downstream unattached to the inner
duct. Vortex bundles at or near the corner of the inner
duct were noted in all of the data examined between
39.0 and 39.5 non-dimensional time units into the large
eddy simulation.

Information from the time-average secondary veloc-
ity, the helicity density, and the topology of the eddying
motions can be combined to postulate how the presence
of the sharp corner of the inner duct affects the devel-
opment of turbulence structures in the flow field. The
vorticies in the secondary velocity plot suck fluid to-
wards the inner duct walls and accelerate it along the
surface towards the sharp corner. Coherent structures
consisting of vortex bundles form near the corner as the
velocity of the secondary flow increases. At the corner,
the flow is accelerated diagonally outwards, transport-
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Figure 4: Helicity density at the top left corner
of the inner duct at 39.175 non-dimenesional time
units into the large eddy simulation

0.67
0.67 4

1,30 -

yfh

Figure 6: Isosurfaces of the discriminant D (see
Equation 11) at the top left corner of the inner duct
at 39.175 non-dimenesional time units into the large
eddy simulation
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Figure 5: Helicity density at the top left corner
of the inner duct at 39.230 non-dimenesional time
units into the large eddy simulation
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Figure 7: Isosurfaces of the discriminant D (see
Equation 11) at the top left corner of the inner duct
at 39.230 non-dimenesional time units into the large
eddy simulation



ing the structures in this direction. As the structures
reach into the mean velocity field, they are stretched
downstream, creating a three-dimensional object. Oc-
casionally, the structures separate from the inner duct
and are transported downstream unattached.

To date, only the region of flow surrounding the in-
ner duct corner has been analysed using flow topology
techniques. Turbulence structures may also be formed
in other regions of the flow, particularly near the cor-
ners of the outer duct, which will then interact with the
structures observed in the present study.

4. CONCLUSIONS AND FUTURE WORK

The results presented here show that flow topology
is a very useful tool for identifying the turbulence struc-
tures in a flow field from a numerical simulation. The
combination of the helicity density and the discrimi-
nant isosurface plots, along with the time-averaged data
of Xu and Pollard, provides an insight into the forma-
tion of turbulence structures in the square annular duct.
Structures form near the inner duct corner, are trans-
ported diagonally outwards by the secondary flow field,
and then stretched downstream by the mean flow field.

The work is ongoing and additional analysis of the
data is required to fully understand the development of
the turbulence structures. It is not clear why all of the
structures outlined by isosurfaces of helicity density do
not appear in the discriminant plots. Only the region
of flow surrounding one inner duct corner has been ex-
amined. Turbulence structures formed elsewhere will
interact with those observed here, affecting the entire
flow field. Also, the use of the Smagorinsky subgrid
scale model in the large eddy simulation database is ex-
pected to introduce errors in the observed shape of the
turbulence structures. A dynamic subgrid scale model
should improve the results. However, despite the limi-
tations of the numerical database, the use of flow topol-
ogy techniques has permitted the identification of clear
and ordered turbulence structures contained in a flow
field generated by a large eddy simulation.
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