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ABSTRACT

Dynamic one-equation models enable us to predict the
reverse transport of turbulent energy. The present
paper provides an explanation of this “backscatter”
phenomenon. LES was used to study the k equa-
tion with the aim of improving RANS models. This
work is part of the project entitled “Large Eddy Sim-
ulation for Computing the Flow Around Vehicles”
(http://www.tfd.chalmers.se/~lada/projects/sinisa
/proright.html) in collaboration between the Depart-
ment of Thermo and Fluid Dynamics at Chalmers and
the CFD group at the Volvo Car Corporation.

THE SGS MODEL
The modelled transport equation for the subgrid kinetic

energy, ksgs, reads (Davidson 1997a)

Oksgs | 1
Pose o (ahins)s = (((Omebhe4) (i), )
%
+ 2ngsgi]§ij - C.ﬂ (1)
A
Here,
L M;, ~ oL 1 5
Cz_m, MiJ =AR25.’,—Ak3935.‘,’; (2)

~~ 1
K =kegs +§£ii

where L;; denotes the dynamic Leonard stresses and
K = %Ti,' is the subgrid kinetic energy at test level.
The coefficient, Cx, has the form
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with
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To ensure numerical stability, a constant value of C
in space, ({C)zy:), is used in the momentum equations,
which are computed with the requirement that the pro-
duction in the whole of the computational domain re-
mains the same, i.e.
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All local dynamic information is included through the
source terms. This is physically sounder as large lo-
cal variations in C only appear in the source term and
the effect of the large fluctuations in the dynamic co-
efficients is smoothed out. The coefficients in the one-
equation model affect the stresses only indirectly. In
the standard dynamic model, the C coefficient is lin-
early proportional to the stresses.

RESULTS
An implicit, two-step time-advancement method is
used, Davidson (1997b). Central differencing and
Crank-Nicolson are used for space and time discretiza-
tion, which produces second-order accuracy in space
and time.

CHANNEL FLOW

The flow in a plane channel was computed for Re, =
1050. A mesh with 64 x 64 x 64 cells was used, with
Tmazr = 2T, Ymaz = 2 and Zmaez = 0.57. A fairly small
extent in the z direction was used in order to obtain a
sufficiently good resolution (z}},,, =~ 26). The grid is re-
fined near the walls using geometric stretching with an
expansion factor of 1.14, which gives yt = 1.1 for the
near-wall node. The time step was set at At = 0.0012,
which corresponds to a maximum convective CFL of
approximately 0.4. The mean velocity and RMS fluc-
tuations are compared with the LES data produced by
Piomelli (1995) in Fig. la,b. As can be seen, the agree-
ment is good for all quantities, apart from the stream-
wise fluctuation, which is over-predicted by some 20%.
The dynamic coefficients are presented in Fig. 1c. The
time-averaged value of the homogeneous coefficient is
((C)zyz)e ~ 0.021. The production, Px,,,, is shown in
Fig. 1d. It has been split into one positive part and one
negative part according to Piomelli et al. (1991)

1
P+ 5 (Pksgs + |Pksgs|)

- 1
P = 5 (Pksgs - IPksgsl) *

It can be seen that part of the production is negative
(backscatter), thereby reducing the total production,
and thereby also kg and vegs. It should be remem-
bered that, in the dynamic Germano model, only very
small magnitudes of negative vsy4, are permitted, but
that the magnitude of negative v, is not limited in
any way in the present model.
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Figure 1: Channel flow. One-equation dynamic model.

Rer = 1050. Markers: Piomelli (1995).
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Figure 2: Computational domain for the surface-
mounted cube.

Model (CL): CrLrms {(CbD)t CbDyrms
Smagorinsky  0.57 0.033 0.46 0.021
OEM 0.57 0.031 0.47 0.019
No model 0.60 0.025 0.40 0.019

Table 1: Mean and RMS values of lift and drag coeffi-
cients.

SURFACE-MOUNTED CUBE

The surface-mounted cubic obstacle is placed on a chan-
nel wall at Re = 40000, based on the incoming mean
bulk velocity and the obstacle height. The geometry
of the computational domain is given in Fig. 2. For
the simulations, a domain with an upstream length of
z1/H = 3 and a downstream length of z2/H = 6 was
used, while the span-wise width was set at b/H = 7.
Both the standard Smagorinsky model (Cs = 0.1)
and the one-equation model (Davidson 1997b), denoted
OEM, are used. The series of time-averaged velocities
and stresses has been computed (see Fig. 3).

The agreement with the experiments is fairly good.
The prediction with models is better than without
models, especially in the recirculation region on the
roof of the cube. Resolved Reynolds stresses and
(u?)s + 2(ksgs):/3 are plotted along the centreline of
the cube in Fig. 4. It can be seen that the SGS stresses
are negligible, apart from close to the re-attachment be-
hind the cube. Figure 5a shows streamlines projected
onto the surface of the obstacle. The stagnation points
on the front and back sides can be seen. Recirculation
regions on the lateral sides are also clearly visible. The
drag and lift coefficients are presented in Table 1. No
experimental values for Cp and Cy, are known to the au-
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Figure 3: Surface-mounted cube. Comparison between
the OEM (dashed line) and Smagorinsky (solid line)
and calculation without model (dash-dotted line).
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Figure 4: Surface-mounted cube. OEM. a) Nor-

mal stresses along the centreline (y 0.5,z
0) of the cube (u'’);/UZ (solid line), ((u"): +
2(ksgs)e/3)/UZ (dashed lines), (v'*);/UZ (dash-dotted
line), ((v"*)e + 2(ksgs)t/3)/UE (0), (w)e/U (4),
(") + 2(Kogs)e/3)/UZ (¥).
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Figure 5: Surface-mounted cube. OEM. a) Streamlines
projected onto the surface of the cube. b) Vorticity w.,
z = 0. ¢) Vorticity wy, y = 0.01.
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Figure 6: Surface-mounted cube. OEM. Surface pres-
sure coefficient Cj, distribution on the upper channel
wall (solid line) and lower channel wall (dashed line).
Experiment: upper wall (0); lower wall (+). z =0.
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Figure 7: Surface-mounted cube. Comparison between
OEM (solid line), Smagorinsky (dashed line). Experi-
ment (markers). Resolved kinetic turbulent energy k.
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Figure 8: Surface-mounted cube. Resolved production
terms along the centreline (y = 0.5,z = 0). (Puu):
(solid line), (Pyy)¢ (dashed line), (Puww): (dash-dotted
line), Puv (=), P (—o0).
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Figure 9: Surface-mounted cube. OEM: (P;): (solid
line), (P2): (dashed line), (P..): (dash-dotted line).
Experiments: Py (0), P2 (*), Puu (+).
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Figure 10: Surface-mounted cube. Production.
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Figure 11: Surface-mounted cube. OEM. z =

—~0.2,z = 0.6. a) Production (Px,,,):/300 is denoted
by —o. (Li2Mi2): (solid line), (LisMis); (dashed
line), (L22M22): (dash-dotted line), (Lstzs)t (%),
(L3aMaa): (++); b) Production (Pk,,,):/10 is denoted
by —o. (Li2): (solid line), (Li13): (dashed line), (Mi2)+
(=), (Mi3)e (—+).

thors. The vorticity w; is presented in Figs. 5b and 5c.
The recirculation zones in front of the cube and on the
roof are clearly visible in Fig. 5b. Recirculation zones
on the lateral sides and behind the cube can also be
seen in Fig. 5c. The horseshoe is visible in Fig. 5c. Fig-
ure 6 compares the pressure coeflicient C,, for the OEM,
along the plane z/H = 0. The agreement between pre-
dictions is fairly good on the lower wall, whereas the
dip in Cp on the upper wall is rather under-predicted,
compared to experiment. More results relating to the
statistics of the mean flow and global quantities are
given in Krajnovi¢ (1998) and Krajnovi¢ et al. (1999).

RANS quantities
LES results can be used to improve RANS models. We
have studied the k equation, where k = 1/2(u'2 +v'2 +
w'?). Figure 7 shows a comparison of resolved kinetic
energy (k); and k obtained in experiments (Hussein and
Martinuzzi 1996). The local maxima of (k); correlates
with the location of the shear layer as it is observed in
the experiments.

The production terms in the k equation were com-
puted in the center plane as:
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Figure 12: Time history of the dynamic coefficients. a)
The dynamic coefficient {C)zyz; b) The dynamic coef-
ficient C. at one chosen cell in front of the cube.
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The resolved production terms are plotted along the
centreline in Fig. 8 and normal stresses are shown in
Fig. 4.

We start by discussing Puu. [(u'”):8(@):/8z| is
much larger than |(u’v');8(a):/8y| in front of the cube.
8(u): /O is negative and decreases rapidly after the sep-
aration in front of the cube and this is why P,, < 0.
The shear stress (u'v’); is positive in this region and
(u'v'), is much smaller then (u'’);. The gradient
9(u): /Oy is positive and becomes negative very close
to the stagnation point. Behind the cube, &(a): /0 is
negative. [t changes sign at £ = 1.5 and, since this term
is dominant, Py, also changes sign. 9(a);/dy is positive
all the way with a maximum at z = 3. (u’?); has its
maximum close to the re-attachment at £ = 2.44. Also



(u'v'):, which is negative, has its minimum close to the
re-attachment. Py, is generally approximately equal to
—2(u'?).8(a). /0.

Next, we consider Pyy. In Py, (v'°):8(0)¢/dy is the
dominant term. —(v'*);8(v):/8y is negative in front
of the cube. It decreases very rapidly at separation
(z ~ —0.97). This rapid decrease in (v'*).8(5):/dy
is caused by 8(v):/dy, which is positive here and in-
creases at this position. Between the separation and
the stagnation point, 8(v):/0x ~ —8(v):/dy. The term
(v"*);8(D):/dy remains negative behind the cube until
z = 1.46. From here on, it increases until it reaches
its maximum close to the re-attachment (z ~ 2.44).
While (v'?);8(t): /8y approaches its maximum close to
the re-attachment point, {u'v’);9(%):/8z, which is neg-
ative, approaches its minimum here. In this region,
8(v):/0r < 0, B(v):/0y < O and (u'v’): < 0. The
stresses (u'v'); and (v'’); are much larger behind the
cube than in front of it.

~
~

Py is negative in front the cube and Puw = Pyo.
Behind the cube, Py is first negative (until z ~ 1.5)
and then positive. It reaches its maximum at the sep-
aration point. The magnitude of P,. is greater than
the magnitude of P,, in front of the cube. Here,
|(u'?).:8(a):/0z| > |(v"*):8(v):/By| because (u'?) >
(v"®); and |8(a):/0z| > |8(v):/dy|. Behind the cube,
Py. > Py, because |3(a):/0z| > |0(v):/By|. After
re-attachment, Py, = —P,,. In front of the body, Pk
increases, as the flow approaches the body. A rapid
decrease in P,, near the stagnation point results in a
sharp dip in Px. Similar results are observed in the LES
of the flow in tube bundles (Rollet-Miet et al. 1999).
The dip in Px behind the cube is due to a strong de-

crease in (v'°);.

Figure 9 shows P, = —2(u'2),6(a)¢/8z, P, =
—2(u'v'):8(a):/8y and P.. in the recirculation region
behind the cube (z/H = 1.5) and in the recovery region
(z/H = 4). The poor agreement with the experiments
is due to incorrect LES predictions of the location of
the Reynolds stress peak (see Fig. 3).

Backscatter

The production, Pk,,,, is shown in Fig. 10. We have
observed the strongest (P~): near the front vertical
corners. To explain the reasons for (P~);, we have
computed (L;;M;;): in the position of the strongest
backscatter. It can be seen in Fig. 11a that, in the re-
gion of strongest (P )¢, (Li2Mi2)e and (LisMis)s are
the dominant terms. Li3 is the most important nega-
tive term, as is shown in Fig. 11b.

The time history of the homogeneous dynamic coef-
ficient (C)azy: is shown in Fig. 12a. The time-averaged
mean value is close to 0.013. The dynamic coeflicient
Cy is shown in Fig. 12b. It often tends towards zero
but it never becomes larger than 3.
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CONCLUSIONS

The one-equation model was used in predictions of
channel flow and the flow around a surface-mounted
cube. For both flows, good agreement with experi-
ments was found. The phenomenon of “backscatter”
was studied and reasons for its prediction are given.
The k equation was studied with the aim of improving
RANS models.
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