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ABSTRACT

The development of a small-scale, secondary roll-up in
an incompressible, inviscid, variable-density, high Froude
number, two-dimensional mixing layer is numerically inves-
tigated using the Transport Element Method. The numer-
ical scheme consists in following a collection of elements
carrying the local value of both the vorticity field and the
density gradient. High resolution simulations of the tem-
poral and spatial models of the shear layer are performed.
They allow to capture the small-scale structures appear-
ing over the primary Kelvin-Helmholtz instability where
the baroclinic torque intensifies the vorticity field. Those
results in contrast with the uniform density case, reveal the
features of the variable-density transition to turbulence in
variable-density shear flows.

INTRODUCTION

Within the context of variable-density shear flows,
the generation-destruction of vorticity by the baroclinic
torque may substantially alter the dynamics of the flow.
Staquet (1995) has shown that the two-dimensionnal
stratified mixing layer in a spanwise gravity field ex-
hibits small-scale secondary eddies located at the saddle
points between large-scale structures. In a compressible
mixing layer, Lele (1989) indicated that the baroclinic
torque may be invoqued together with the dilatation to
explain the Mach number effect on the spreading rate.
Our focus is on baroclinic effects beyond the Boussi-
nesq approximation but uncorrelated to compressibil-
ity. This purely inertial influence of density variations
is likely to occur in high Reynolds number mixing of
fluids of different densities or in thermal mixing.

In the frame of the statistical approach, Chassaing
et al. (1994) stressed the role of the correlations with

density fluctuations in turbulent variable-density jets.
Direct numerical simulations have been performed, see
Chassaing et al. (1997) and Joly et al. (1997), that
focus on the baroclinic forcing of a turbulent medium.
The present contribution is a step toward the identifi-
cation of a secondary baroclinic instability in the two-
dimensional shear layer. Primary results on the tem-
porally evolving periodic case, initiated in Reinaud and
Joly (1998), are further investigated. Then a numeri-
cal simulation of a spatially evolving layer confirms the
occurence of the baroclinic mode, a result in contrast
with the simulations by Soteriou and Ghoniem (1995).

THE BAROCLINIC TORQUE

The baroclinic effect is the additionnal torque that is
felt when an inhomogeneous mass field is submitted to
a pressure gradient normal to the local density gradient.
In the limit of inviscid two-dimensionnal incompressible
flows, the baroclinic torque is the only source of vortic-
ity variation along the particle path, as stated by the
corresponding vorticity equations :

d¢w=—p1—2VP><Vp (1)

where d; = 8; +u-V is the material derivative. In
this simplified situation the pressure gradient is directly
connected to the material acceleration a = du/dt such
that the baroclinic torque b reads :

b=ax V(np) (2)

Hence the interpretation of the baroclinic torque as be-
ing of inertial nature. The Lagrangian approach, han-
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dling directly the material acceleration, is particularly
suited for the simulation of such a problem as it avoids
the resolution of a Poisson equation for the pressure.
The free shear layer is also a case where vorticity is
concentrated on a bounded domain and this indicates
an expected computationnal efficiency of the method.

NUNERICAL PROCEDURES

Following Ghoniem et al.(1988), the so-called “Blob
vortex method” originated by Chorin (1973) can be
generalized to perform simulations of variable-density
flows. The numerical procedure aims at tracking a col-
lection of n Lagrangian elements transporting both the
local value of the vorticity and the density gradient on a
radially symmetric core, characterized by the “cut-off”
function fs;. The basic equations are the Lagrangian
vortex element displacement :

de xi = u(xi, t) (3)

u(x,t) = // Ks(x —x") w(x', t) dx’ (4)

where K5 = K * f5 is the convolution product between
the kernel of the Biot-Savart integral K and the “cut-
off” -or desingularisation- function fs5, and the vortic-
ity transport equation (1). They are evolved in time
simultaneously using Runge-Kutta schemes. Both ac-
celeration and density gradient fields have to be up-
dated at each calculation step. The acceleration of the
transport elements is obtained by a second-order back-
ward finite difference scheme. The density gradient is
deduced from the local stretching of an isopicnic line
according to the following equation :

ngZﬁ—' = cst and

Vp-d€=0 (5)
In the discrete description of the flow map, the lo-
cal stretching around an element is obtained from the
knowledge of the location of the neighbouring elements
of the same isopicnic line. Then, by considering that

Ap=V .Vp (6)

the density field can be obtained using the reconstruc-
tion formula (Anderson, 1980) :

pit) = [[ Lotx=x)- Vo, 08x 55 (7)

where p; is a constant depending on the boundary con-
ditions and Ls = L * f5 is the desingularised gradient
of the two-dimensional Green function with
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Figure 1: The temporal model (g stands for Vp)

L(x) = L(ac, y) (8)

27r?

A Lagrangian spatial refinement strategy, which in-
serts or removes elements along isopicnic lines, is
adopted which ensures the required overlap between
neighbouring blob elements (Leonard, 1980).

THE TEMPORAL MIXING LAYER

In those simulations, the temporal integration of the
transport equations (1 and 3) is performed using a
fourth-order Runge-Kutta scheme. The kernel of the
Biot-Savart law is desingularised using gaussian func-
tions and leads, in the present case, to a fourth-order
spatial accuracy for the velocity field (Beale and Ma-
jda,1985).

The initial condition is a gaussian vorticity layer
tilted by an harmonic spatial perturbation on which
a density gradient layer of the same thickness is super-
imposed. This model is in good agreement with the
experimental mean velocity and density profiles near
the trailing edge of a plane splitter plate, see Brown and
Roshko, 1974. Periodicity is assumed in the streamwise
direction and is set to the most unstable wavelenght of
the constant-density case A = 13.20 where o is the stan-
dard deviation of the initial vorticity profile (Ghoniem
et al., 1988). The geometry is described on figure 1.

The periodic boundary condition is treated analyt-
ically by evaluating the velocity field induced by any
vortex in the computation domain and its infinite row
of images in the other periods (Ghoniem et al., 1988).

The circulation over a period is demonstrated to re-
main constant and gives a fair validation of the simula-
tions (I' = —=AAU).

Moreover, the temporal model allows to perform high
resolution simulations of the initial stage of the Kelvin-
Helmholtz roll-up because of the restriction of the com-
putational domain to a single main structure.

The problem is normalized by the velocity scale
AU/2, the density p2 of the bottom flow and the length
scale 0. The temporal evolution of the reduced circula-
tion is presented in figure 2 in the case where the initial
layer is mapped with 73 isopicnic lines and each lines is
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Figure 2: Temporal evolution of the reduced circulation
over a period of the temporal model for p;/p2=3.0. The
initial layer is mapped with 73 isopicnic lines and each line
is mapped with 264 elements.

discretized with 264 elements. Then, the relative error
on the circulation is kept under 1.5% till ¢ = 22.0.

As noted by Soteriou and Ghoniem (1995), during the
roll-up of the primary Kelvin-Helmholtz instability, an
element in the braid experiences an accelerelation that
advects it toward the vortical core. The local density
gradient sets the sign of the baroclinic torque contribu-
tion to the vorticity field such that vorticity is created
in the light-side braid of the main structure and de-
stroyed inside the heavy-side braid. It should be noted
that vorticity may even exhibit positive values. Those
facts are relevent of both the temporal and the spatial
models of the shear layer. This results in a substan-
tial change and dissymmetry of the vorticity pattern as
compared to the constant-density one.

Moreover the present paper stresses that the com-
bination of the natural straining field and the inten-
sification of the vorticity in the light-side braid yields
a highly unstable sublayer that breaks into a row of
growing secondary structures. This sublayer is allowed
to evolve in time and space within the periodic time-
evolving box and is identified as a baroclinic secondary
instability. The figure 3 illustrates the evidence of the
secondary mode against the equivalent constant den-
sity vorticity field. The invariance of the sequence of
small-scale eddies against spatial and temporal resolu-
tion has been previously established (Reinaud and Joly,
1998). The figures 4 that represent instantaneous spec-
tra of the enstrophy repartition over a period at ¢t = 20.0
and t = 21.0, also reveal the specificity of the variable-
density case as this repartition is radically different for
the two cases. In the variable-density case, it is shown
that enstrophy develops high wave number modes.

Additionnal simulations, performed on a two-period
box with a pairing mode also exited, indicate that the
baroclinic break-up of the light-side braid may occur
well before the pairing has completed (Reinaud and
Joly, 1998). This motivates the investigation of the
more realistic, spatially developping shear layer.

Figure 3: Iso-vorticity contours at ¢ = 20.0 for temporal
mixing layers. Case | : uniform density, Case Il : variable
density (p1/p2 = 3.0)

THE SPATIAL MIXING LAYER

The temporal integration of equation (1 and 3) is per-
formed using a second order Runge-Kutta scheme. The
spatial accuracy is also reduced to enhance the robust-
ness of calculation in the intense gradient region. The
vorticity profile in the inlet section is gaussian and the
layer is confined between two free-slip walls. The com-
putational domain is a troncated vorticity layer with
length Xnez. The walls are taken into account by a
Schwartz-Christoffel conformal mapping of the physi-
cal space into the upper half plane. As proposed first
by Ghoniem and Ng (1987), an appropriate system of
images ensures a zero normal velocity at the walls. The
upstream uniform flows are represented by point vol-
ume sources placed (in the physical space) at (—o0,07)
and (—o0,0%"). The elements are introduced in the com-
putational domain according to the Kutta condition.
The downstream condition consists in deleting the el-
ements as they cross the exit section of the compu-
tational domain. This assumption, though generating
errors near the exit section, is commonly used in vortex
methods.

The geometry of the configuration is given in figure
5. The layer is forced with the most unstable mode
of the uniform density case and its first surbharmonic.
The problem is normalized by the velocity scale Uy,
the density p2 of the top stream and the length scale
H, height of the channel. The standard deviation o of
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Figure 4: Enstrophy spectra over a period of the tem-
poral model for p;/p2=3.0 (solid line) and p1/p2=1.0
(dashed line) at t = 20.0 and ¢t = 21.0
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Figure 5: Geometry of the spatial model

both the vorticity and the density gradient profiles at
the inlet section is scaled so that ¢ = H/(2A) where A
is the most instable wavelenght of the uniform density
case. This choice allows the pairing mode to appear
without being constrained by the presence of the walls
(Ghoniem and Ng, 1986).

The figures 6-10 show the location of the elements
over the vortical domain for 5 different computational
settings. When comparing the figures 6 and 7, the in-
fluence of the exit condition can be seen to be weak.
As quoted by Soteriou and Ghoniem (1995), the results
are affected on an upward distance corresponding to
the channel height H. The rather poorly resolved sim-
ulations are showing a very good agreement with the
results obtained by the authors.

As in the temporally evolving layer, an increase in
the spatial resolution between the cases reported in fig-
ures 7, 8 and 9, reveals secondary roll-ups while the
main structures location is unchanged. Those roll-ups
are the signature of an additional instability mechanism
over the constant density case reported for reference on
figure 10.

The vorticity field (not illustrated here) reveals a
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much more intricated pattern before the pairing. The
pairing phenomena itself is no more a pairing between
two main structures but rather a pairing of two dipoles.

Though the fine description of small scale structures
does not change the layer spreading rate, it is necessary
to the description of the transition to turbulence in the
variable density shear layer.

Conclusion

Highly resolved simulations of the temporally grow-
ing variable-density inviscid mixing layer reveal the
presence of a secondary baroclinic instability. The
spatio-temporal development of this secondary mode
could be viewed as a smaller scale Kelvin-Helmholtz
mode due to the stretching and baroclinic intensifica-
tion of the vorticity light-side braid. The occurence
of this secondary mode is demonstrated in the case of
the spatially developping layer. It is concluded that
the baroclinic forcing of a variable-density mixing layer
ends in a transition towards turbulence radically differ-
ent from the constant density one.
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Figure 6. Location of the elements a ¢t = 8.0 for a variable-density spatially developping shear layer with Uz /U, = 0.5
and p2/p1 = 0.33, Xmaz = 5, h = 0.0234 (initial spatial step)

1.0 T T T T T T T T

0.5

0.0 : : ‘ . ;
0.0 1.0 2.0 3.0 4.0 5.0

Figure 7. Location of the elements a t = 8.0 for a variable-density spatially developping shear layer with Uz /U, = 0.5
and p2/p1 = 0.33, Xmaz = 4, h = 0.0234 (initial spatial step)
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Figure 8. Location of the elements a t = 8.0 for a variable-density spatially developping shear layer with Uz /U, = 0.5
and p2/p1 = 0.33, Xmaz =4, h = 0.0117 (initial spatial step)
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Figure 9. Location of the elements a ¢ = 8.0 for a variable-density spatially developping shear layer with Uz /U; = 0.5
and p2/p1 = 0.33, Xmax = 4, h = 0.0078 (initial spatial step)
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Figure 10. Location of the elements a t = 8.0 for a uniform-density spatially developping shear layer with Uz /U, = 0.5,
Xmaz = 4, h = 0.0117 (initial spatial step)
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