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INTRODUCTION

The effects of rotation on the structure of weak
and developed turbulence present interest in industrial
flows, while stable density stratification and coupled
stratification-rotation effects occur in geophysical flows.
In these cases, the role of body forces (Coriolis, buoy-
ancy) and mean gradients (density but not velocity) is
subtle and difficult to model, since their linear dynam-
ics consist of steady or oscillating modes of motion, the
latter being linked to dispersive waves. By contrast with
shear flows, there is no direct production of energy by
linear effects, and the alteration of dynamics is essen-
tially controlled by nonlinear interactions, such as res-
onant waves for instance. Given the complexity of this
general problem, we will restrict the study to the case of
homogeneous turbulence, assuming unbounded fluctuat-
ing flows — or flows in periodic boxes for DNS realiza-
tions — and uniform mean temperature gradient. For
this homogeneous, and generally anisotropic, turbulence,
the Fourier decomposition leads to analytical solutions
for the linear regime, in accordance to “Rapid Distortion
Theory” (RDT) and nonlinear dynamics is simulated by
pseudo-spectral DNS codes, or modeled by two-point clo-
sures. Of course, spectral description includes the exact
dispersion law of inertio-gravity waves. RDT and DNS re-
sults have been contrasted both in the rotating and in the
stratified cases, separately considered. Given the limits of
RDT, an original version of the EDQNM theory (Orszag
1970), called EDQNM2, has been extensively exploited
to predict the nonlinear interactions in both cases, with
quantitative comparisons with DNS (Cambon et al. 1997,
Godeferd & Cambon 1994, Staquet & Godeferd 1998). In
these previous works was used a projection of the fluctu-
ating velocity/temperature field onto the eigenmodes of
the linear regime. Nonlinear interactions were also fur-
ther analyzed in terms of these eigenmodes. In addition,
the whole study has suggested a complete anisotropic de-
scription of the second order spectral tensor of double
correlations, even for post-processing DNS data, which

allows to quantify partial two-dimensionalization or two-
componentalization (see below). The angular dependence
in spectral space, or accordingly the conical structure of
the spectral energy containing region — including the sep-
aration into different energy modes —, was shown to be
a crucial indicator. Of course, to some extent these in-
dicators are reflected in classical correlations in physical
space. Among the latter, the integral length-scales in-
volving different directions are the most significant. Our
main purpose is to extend these studies to the coupled ro-
tation-+stratification case in order to clarify and to model
the interaction of both steady and wavy modes in the
long-time dynamics of “pancakes” (layering) or “colum-
nar” (two-dimensionalization) structures. Previous DNS
studies are not conclusive, and asymptotic analyses (see
Babin et al. 1998) only concern the coupled case in boxes
with small aspect ratio.

Although RDT captures a part of the dynamics in par-
ticular cases of flows subjected to pure rotation or pure
stable stratification, and in the latter case can compare
well with DNS results (vanHaren 1993 and Hanazaki &
Hunt 1997), such a linear approach gives no insight into
the creation of irreversible anisotropy. This creation is
connected to two-dimensionalization in rotating turbu-
lence or horizontal layering tendency in the stably strati-
fied case. In other words, RDT dynamics characterizes a
phase turbulence which conserves some modes of spectral
density of energy: kinetic energy for the rotating case,
total energy for the stably stratified case. However, two-
dimensionalization or two-componentalization, meaning
horizontal layering, which affect the distribution of this
energy, are typically nonlinear effects. One illustration is
the development of two typical integral length-scales as
shown in the following. The blocking of the scale L3,
which characterizes the vertical coherence of the horizon-
tal field, and the continuous increase of L};, which char-
acterizes horizontal coherence, is only obtained in nonlin-
ear calculations (DNS and EDQNM2), but not in RDT.
This nonlinear behavior provides the best quantification
of the rise of vertical layering in physical space. In the
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coupled case with both rotation and stable stratification,
the consensus seems not to be complete about the respec-
tive roles of linear and nonlinéar terms in building pan-
cake or columnar-type structuring (Kimura, private com-
munication). Previous DNS and LES are not conclusive,
since emphasis is given to isovorticity surfaces or spher-
ically averaged spectra, and often the resulting observa-
tions are biased by numerical artifacts such as insufficient
resolution or interference with periodic boundaries. In
order to further investigate linear and nonlinear phenom-
ena, we propose the following strategy. First, background
solutions of RDT, which are analytically known for the
coupled case (Godeferd 1994, Kimura private communi-
cation) are used to calculate the statistical correlations
(two-point or one-point) which are relevant for describing
the anisotropic structure directly connected to layering or
two-dimensionalization. These results will be compared
with the results of DNS, in an attempt at providing a more
complete answer on what is linear — given by RDT —
and what is nonlinear — only given by DNS. In addition
to such numerical comparisons which exhibit the typically
nonlinear effects, RDT has another role. Not only does it
provide the reference for pure linear dynamics, but also
the eigenmodes of the linear regime form a useful basis
for expanding the fluctuating velocity-temperature field,
even when nonlinearity is present. Nonlinear interactions
can then be evaluated and discussed in terms of triadic
interactions between these eigenmodes. Accordingly, the
complete anisotropic description of two-point second or-
der correlations can be related to spectra and cospectra
of these eigenmodes.

The Boussinesq equations are considered in a rotat-
ing frame. Linear operators involve two frequencies, the
Brunt-Wiisila (BV) frequency IV associated with the sta-
ble stratification, and the Coriolis parameter 2{). Our
RDT analytical study uses these equations in Fourier
space.

Three cases will be considered in the following:
2Q/N < 1,2Q/N =1 and 2Q/N > 1.

THE LINEAR APPROXIMATION

Normal Modes Background For Linear Solutions

We use here the same notations as in Godeferd and
Cambon (1994). The fluctuating fields for velocity u
and temperature 7 are gathered into a unique three-
dimensional vector v. The Fourier coefficients for its 3
components in the fixed frame of reference are (v;,7 =
1,2,3), with 3 the vertical direction. They become ¢¢ in
the Craya-Herring local frame (e!,e?,e® = k/k). The
unit vectors e! and e? lie in the plane orthogonal to k,
such that el is horizontal. Greek superscripts only take
the values 1 or 2, so that ¢ refers to the fluctuating
velocity field components in the local frame, and a kine-
matically rescaled fluctuating temperature Fourier com-
ponent is used: ¢ = i(Bg/N)7. The linearized system
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of equations in the Craya-Herring frame becomes

e 0 -or O ¢
| + (ar 0 as> ((152) = (1)
#° 0 -0 O 3

or ¢ + M@ = 0, where 0, = 2Qcosf, o5 = Nsinb,
0 = /0% + 02 are respectively the absolute value of dis-
persion law frequencies for inertial waves, gravity waves
and inertio-gravity waves. The system of equations (1) is
easily solved by diagonalizing the matrix M. The three
following eigenmodes are obtained in the local frame:

NO = (—06/0> N Zg (0;:/ia> o)

orlo os/o

respectively related to the eigenvalues 0 and the two *o.
NO is the stationary mode, which coincides with the
quasi-geostrophic mode (QG). It comprises two contri-
butions, one from the horizontal divergence-free velocity
mode ¢! (‘vortex’ mode), and one from the mode ¢° as-
sociated with the temperature field. The wavy modes are
N=*1 also called ageostrophic modes (AG) hereinafter in
agreement with classic geophysical literature. Note that
the latter wave-affected modes, setting either N = 0 in
(2) or © = 0 depending on the case, do not exactly co-
incide with the corresponding modes that were defined
in the particular cases of pure rotation (Cambon et al.,
1997) or pure stratification (Godeferd & Cambon, 1994).
The difference arises from different normalization coeffi-
cients (namely i, —i, v/2). The wave/vortex terminology
was used by Riley et al. (1981) for the analysis of DNS
of stably stratified turbulence, and in a more geophys-
ically related context, the geostrophic and ageostrophic
counterparts, by Bartello (1995) and Babin et al. (1998).
The basis of eigenmodes is used to express v as

v= Y &N, 3)
€=0,%1
E=v-N"¢ e=0,%1, (4)

using orthonormal properties of the eigenvectors. Accord-
ingly, the initial value linear problem (1) has a general
solution

v(k,t)= > N (N~ v(k,to = 0)) . (5)
€=0,%1

RDT Solutions For Second-Order Statistics

From eq. (5), the RDT solutions for any statistical Eu-
lerian quantity may be derived. Second order statistics
are given by

<v;i (p,t)v;(k,t)>= Vi (k,t)6(k —p)  (6)

and the RDT equations for V;; are unchanged if one ac-
cepts the notation misuse V;; =<wjv; > for linking V;;



to its initial value through the general solution (5). It then
is possible to project two-point statistics onto the local
frame, yielding ®"™ = ej'V;;e]", as used previously by
Godeferd & Cambon (1994), so that ®!!, 22 &33 and
®23 are respectively related to the vortex mode kinetic
energy, the wave kinetic energy, the potential energy and
the heat flux. The latter also contains the vertical buoy-
ancy flux, an essential quantity of interest in the case of
pure stratification. These quantities could be used again
in the general rotating and stratified case, but they are
less informative, and iy is probably sounder to employ the
quadratic terms £*€€ related to the QG and AG eigen-
modes, since they lead to an exact tensorial diagonali-
sation. Without any calculation, it is obvious that the
RDT temporal evolution of any two-point or one-point
correlation can be obtained in a quasi-analytical way pro-
vided initial data have simple two-point statistics. For
instance, initial three-dimensional isotropy with vertical
mirror symmetry yields

Ec(k)
8mk?’

33 _ Ep(k)

11 _ 22 _
== o 8mk?’

(7

all other cospectra being zero. For further simplification,
the spherically averaged potential energy spectrum is cho-
sen proportional to the kinetic one, as Ep = aFc.

In the following RDT results, we shall take advantage
of two conservation laws. First, total energy is conserved
in any orthonormal frame of reference:

U;"Uj — ¢i*¢j — Z &'6*56 )

e=0,£1

Second, owing to the linear approximation, there is con-
servation of QG energy, written as £9*£0 using eq.(2) and
(4). Finally since the vertical kinetic and potential ener-
gies are contained in v3v3, the horizontal kinetic energy
is obtained by difference from total kinetic energy.

Let us point out that for easing the algebra, it is worth-
while to distinguish statistical quantities which only in-
volve an integration in the horizontal wave-plane k3 = 0
from those that require integrating over all k orientations.

Vertically Separated Integral Length Scales. In
agreement with the previous definitions, conservation
laws and remarks, the following are found with no extra
effort. The conservation of v v; and integration over the
plane k3 = 0 yield

<ul> L3+ <ul> L3+ <ui> L3,

+(Bg/N) <7°> L} = g3 Lo(2/3 + &/3) (8)

where Ly is the initial integral length scale, proportional
to [, (Ec(k)/k)dk, and L? is defined from the spectrum
of potential energy, as are the other L% kinetic length-
scales. From the definition of £°, in terms of N©, using

ks = 0 one computes the horizontal kinetic energy den-
sity £9%€%|k,—0 = ¢'* @', whereupon integrating yields

(9)

Finally, < u2 > L{3 and (8g/N) < 72> LY display
simple oscillations with opposite phases whereas their
sum is constant, as is the case in pure stratification. No-
tice that both remain constant if there is initial equipar-
tition o = 1.

<u?> L+ <u> LY = @Lo/3.

Other Correlations. From the conservation of energy
it is found

<u?> 4 <ul> 4 <ui>
+(Bg/N)? <’ >= g3 (1 + @/2)

<u? > Li+ <ui> Li,+ <ui> L,
+(Bg/N) <72> L = ¢2Lo(2/3 + a/3) .

(10)

(11)

<u? >, <72 > and < ufL}; > are given by inte-
grals over 6, the angle of k to the vertical. Their his-
tory shows damped oscillations due to the integration of
e™ot m = £1,42, and constant terms, correspond-
ing to m = 0, due to contributions from £0*¢0, ¢1*¢!
and £71*¢~1. Hence, analytical estimates are obtained at
least for the asymptotic values. Of course, other simplifi-
cations due to semi-axisymmetry — axisymmetry without
mirror symmetry — need be used. In so doing, we can
complement our set of RDT formulas with

a¢ Lo
6

<ui>= %—(2’ (C+(1-a)f(Nt,B)) , (13)
o3 /1 1-2g?

4 Jo 49222 + N2(1 — a?)
x (802%2% + N*(1 — 2%)(1 + @)) dz
§N2 /1 (1-2?)?
4 o 40222 + N2(1 — 2?)
X cOS (2\/492232 + N2(1 - :c2)t) dz  (15)

<ui>L3; = (14 a+ (1 —a)cos(2Nt)) (12)

(14)

f(Nt,B) =

The part C' depends on parameters @ and B = 2{)/N.
It is easy to calculate in the non rotating case B = 0,
amounting to C' = (1 + @)/2, and in the non dispersive
case B = 1 that gives C = (3 + 2a)/5. The time-
dependent part f(Nt,B) can be shown to give damped
oscillations (see fig. 1), but for B = 1 for which there is
no damping. Using exactly the same mathematical ways,
one also shows that

Bg 2 2 3_qu0
~) <7 >LT——6——(1+a—(1—a)cos(2Nt))

in phase opposition of relation (12) as expected.
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FULL TURBULENT SIMULATIONS

Numerical method and parameters

We perform Direct Numerical Simulations (DNS) of the
previously mentioned Boussinesq equations with Coriolis
effect, in a periodic three-dimensional cubic box of size
47. The method is a standard pseudo-spectral one in
Fourier space, with full de-aliasing. The time scheme of
third order Adams-Bashforth type. The code has been
used by Staquet & Godeferd (1998) in the stably strati-
fied case only, to which we have added the Coriolis term
2Q x u. The resolution is 1283, and an isotropic pre-
computation stage is used for allowing an initially random
field to develop a realistic dynamics, before the applica-
tion of the external gravity and rotation effects, at t = 0,
say. Therefore, simulations are initiated with zero po-
tential energy, corresponding to & = 0. Viscous RDT is
obtained by cancelling the nonlinear terms in the DNS
code.

Numerical values for the parameters are as follows:
in run C30, 20 = N = 7/2; in run C3A, N = 5m,
20 = 7/2; run C3B: N = 7/2 and 2Q0 = 57. The non
dimensional parameters are computed at the beginning
(t = 0); they include the Reynolds number Re = goLo/v,
the Rossby number Ro = ¢o/(200Lo) and the Froude
number Fr = ¢o/(NL). Small values of these last
two quantities indicate very strong body forces compared
with the turbulent momentum transport, or equivalently,
dominant linear vs. nonlinear terms. All runs start at
rather low Re 100, due to the initial isotropic pre-
computation decay. The Froude and Rossby numbers al-
ternately take values of 0.93 (small stratification or rota-
tion) and 0.093 (strong stratification and fast rotation).
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o 1 time 2 3

Figure 1: Time plot of <u2>: solid lines for DNS results,
dotted lines for the analytical prediction of eq. (13). Rapidly
oscillating curves for case C3A. Heavy lines represent case
C30. Others for C3B.

Results

We shall not dwell on the inhibiting effect upon tur-
bulent energy decay due to either rotation or stratifica-
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tion, since extensive work was devoted to this by Cambon
et. al (1997) and Staquet & Godeferd (1998). The pur-
pose of our work is to examine closely the generation of
anisotropy due to wave effects, of either linear or nonlin-
ear character.

0.05

Figure 2: Time plot of < u} > L},.

Same legend as
fig. (1). Analytical results from eq. (12) this time. The
analytical curves for cases C30 and C3B are superimposed
since the same NN is used.

Effects captured by the linear equations. Obvi-
ously, the analytical expressions given in the second sec-
tion are expected to reproduce most of the large scale os-
cillating effects, which are essentially due to linear terms
in the equations: the oscillations of the heat flux are pro-
duced by the buoyancy force, and some large scale oscil-
lating motion may be created by the action of the Coriolis
term onto the larger structures of the flow. However, it
is important to underline that analytical derivations may
only be completely carried out in the non viscous case,
for which no wavenumber dependent decay occurs. On
the contrary, in the viscous case details of the spectral
energy distribution plays a role, not only its integral. In-
deed, viscous decay occurs at a different rate exp(—vkt),
thus explicit integration is not possible without the help
of numerical tools.

Having said so, we proceed to comparing the time evo-
lution of some quantities predicted in the linear non vis-
cous approximation or computed by DNS. Fig. 1 shows
< u% >, proportional to the vertical kinetic energy. As
expected, in the strongly stratified case C3A we see that
rapid oscillations of < u% > occur, at a frequency close
to the BV frequency N/27. For the non dispersive case
C30 and the fast rotating one C3B, the oscillating pe-
riod is much larger, and quite close in the two cases, also
driven by the BV frequency. As mentioned, the DNS
curves exhibit a temporal decay. If we put this decrease
aside, we observe a very good agreement of the oscilla-
tion period in the linear results. Such an agreement may
be put on the account of our zero potential energy ini-
tial conditions. More generally, if kinetic and potential



energies are initially different, large oscillations are gen-
erated by gravity, appearing as a linear effect. Other-
wise, linear theory concludes to no energy exchange at
all in the early decay stage (Staquet & Godeferd 1998).
Note also on fig. 1 the analytically predicted damping of
the oscillations. Fig. 2 shows the product < U§L§3 >
which, from eq. (12) is expected to exhibit no damping
in its oscillations. Here again the eigen frequency given
by linear theory is extremely close to the oscillating fre-
quency computed in the DNS runs. Fig. 3 shows the evo-
lution of the directional length scales for different corre-
lations. In this axisymmetric geometry, one distinguishes
mainly correlations of horizontal velocity components in
the horizontal or vertical directions, and correlations of
the vertical velocity component. Note that correlations
parallel to the component considered are twice the oth-
ers, in isotropic turbulence, whence a dividing “2” coeffi-
cient. The dashed curves on this figure represent L3, /2
computed from eq. (12) and (13). Here again, the os-
cillations are very well tuned with those in DNS for the
same quantity. Even the amplitudes of these oscillations
are observed to be in quite good agreement. The viscous

A

R B SR BN

o S N
time 2 3

o 1

Figure 3: Time evolution of the length scales for: (a) run
C30; (c) run C3B; (b) run C3A. — for the horizontal length
scale (L1, + L%,) /4. — —, L5 /2 computed from eq. (12)
and (13). Heavy solid line with largest oscillations: L33/2
from DNS. The last one is L3;.

RDT results on fig. 4 show a very good agreement with
DNS for the evolution of the horizontal length scale Ly,
computed as a mean between L}; and L%, owing to ax-
isymmetry. The growth of this scale reflects the decay of
turbulence, much as in isotropic turbulence, during which
total energy is dissipated, and the large energy contain-
ing scales are shifted towards smaller wavenumbers. The
phase agreement that can be observed comes from the
fact that exactly the same velocity /temperature fields are
used as initial conditions for both the RDT and DNS runs.
(Ideally, some phase-related fluctuations ought to be re-
moved by averaging over a series of different realisations
with different initial random distributions.)

What is NOT reproduced by linear approximat-
ions. Observing fig. 4, the reader has already noticed
that, although the horizontal structure of the flow seems
to be statistically equivalent in RDT and DNS fields, the
vertical one appears much different. Indeed, fig. 4 also
shows the time evolution of the very important length
scale L3, (which is actually computed as (L3, + L3,)/2).
In isotropic turbulence, this length scale should grow
exactly in parallel with the horizontal Lj one. On
the contrary, the effects of rotation and stratification,
both acting in the preferential vertical direction, modify
strongly the dynamics of the flow in this direction,
whence a different vertical structure as well. For run
C3A, stratification appears to dominate, since the
layering of the flow is indicated by a very strong vertical
decorrelation of horizontal velocity components: not
only does L?l not grow anymore, but it even decreases
slightly. If one adds to that the growth of L, we can
picture structures in the flow as being “pancake-shaped”.
A transposed effect is obtained in case C3B, for which the
fast rotation rate creates vertically elongated structures,
as demonstrated by the large increase of L?l on fig. 4,
much sharper than that of Lj. [No tendency of one kind
or the other is observed for the non-dispersive case C30,
for which the inertio-gravity waves do not lead to such
clear anisotropic features (see fig. 3(a)).] For both cases,
we observe that the linear approximation fails totally
in reproducing such a structural tendency. Accordingly,
RDT’s L}, quietly grows as if turbulence were merely
in a state of isotropic decay. This demonstrates that a
thorough characterization of the structure of turbulence
has to be used in such rotating/stratified contexts, for
exhibiting the discrepancy between the linear or the full
nonlinear modelling approaches.

Finally, we present the spectral characterization of the
flow statistics on fig. 5. Of course, the shown anisotropic
spectra contain the same information as the correlation
integral length, and more. We present the total en-
ergy density spectra, accumulated in three sub-domains
of spectral space: the conical polar sector with wavevec-
tors close to the vertical direction, the equatorial sector
with almost horizontal wavevectors, and the intermedi-
ate one. As plotted, the layering of the flow for case
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C3A translates into much more energy being contained
in the polar region. On the contrary, for case C3B, more
energy is accumulated in the equatorial direction. The
spectral analysis deserves a long discussion, but our point
here is to show this strong angular dependence of the
anisotropic spectra generated by DNS. However, the lack
of “coherence” of the kinematically evolving fields in the
linear approximation conserves the exact isotropy of the
energy spectrum simulated by viscous RDT, as shown in
the small sub-plot of fig. 5. We conclude that irreversible
anisotropy, as in the spectra of fig. 5, is unattainable by
simple linear RDT assumptions.

Acknowledgements. Calculations have been performed
on the Cray C98 of IDRIS (CNRS), thanks to computed
time allocated by the Scientific Council of IDRIS.

0.6 L I A L B
i 1
0.4
C3A
{1,3}
= \VAV. 3B
0.2 ,,.~--.-.~~.-,---‘:"-v.'-‘=:5:-‘-"""";’111:.)'{5;; B
- DNS C3A -
0 e b e b e
0 1 time 2 3

Figure 4: Time evolution of the directional length scales
in the DNS (solid lines) and the viscous RDT (dashed lines)
runs C3B and C3A. Heavy lines for L3;, thin lines for (L}, +
L3,)/4.
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