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ABSTRACT

In this study, the evolution of the velocity field and
scalar concentration fields in stably stratified shear flow
is studied using direct numerical simulations. Two cases
with vertical mean shear and horizontal mean shear are
compared. In both cases, the growth of the turbulent
kinetic energy weakens as the Richardson number is
increased. However, the horizontal shear case shows a
stronger growth of the turbulent kinetic energy than
the vertical shear case for a given Richardson number.
The ordering of the velocity components was found to
change from streamwise > horizontal > vertical in the
vertical shear case to streamwise > vertical > horizontal
in the horizontal shear case. The fluctuation level of a
passive species variable with a vertical mean gradient
was observed to be stronger in the horizontal shear case.
The ratio of the vertical turbulent eddy diffusivity to
the horizontal turbulent eddy diffusivity was found to
be larger in the horizontal shear case.

INTRODUCTION

Shear and stratification are important features of tur-
bulent flow in geophysical, environmental, and engi-
neering applications. Nutrients, pollutants, or reac-
tants present in these flows are transported and mixed
by the turbulent motion. However, the turbulence evo-
lution is influenced by the competing effects of shear
and stratification. A review of geophysical turbulence
can be found in Caldwell (1987) and in Caldwell and
Moum (1995).

In this study, the prototypical example of stratified
shear flow with uniform vertical stratification S, =
09/0z3 and uniform vertical shear Sy = 0U1/dz; or
uniform horizontal shear Sy = 0U;/0z2 is considered.
In addition, two passive species variables C; are intro-
duced with uniform mean gradients in the vertical di-
rection Hz = 0C3/0z3 and in the horizontal direction

H; = 803 /0.

Previous work has been focused on the vertical shear
case. Laboratory experiments have been performed by
Rohr et al. (1988) in a salt-stratified water channel and
by Piccirillo and Van Atta (1997) in a thermally strat-
ified wind tunnel. Direct numerical simulations have
been performed by Gerz et al. (1989), Holt et al. (1992),
and Jacobitz et al. (1997). In these investigations, the
gradient Richardson number Ri = N?/S? was identi-
fied as the primary parameter in stratified shear flow.
Here N = (—gS,/po)'/? is the Brunt-Viisili frequency,
S the shear rate, g the gravity acceleration, and po the
ambient density. Note that S can refer to the verti-
cal shear rate Sy was well as to the horizontal shear
rate Sy . Passive species variables were included in the
large eddy simulations by Kaltenbach et al. (1994). It
was found that the turbulent mixing of these concen-
tration fields is stronger in the horizontal direction than
in the vertical direction.

Nonvertical shear flow has been studied only recently
by Jacobitz and Sarkar (1998). It was found that the
turbulent fluctuations as well as the vertical transport
are stronger in the horizontal shear case. However, it
was impossible to compare horizontal momentum and
mass transfer in the horizontal shear simulations, since
the mass transfer was in the vertical direction. The
introduction of concentration fields makes such a com-
parison possible in the present study.

In the next section, important definitions and equa-
tions are introduced. Then, the results of the simula-
tions are presented. First, the evolution of the velocity
field is summarized. Then, the evolution of the concen-
tration fields is presented and compared to the velocity
field. Finally, the turbulent mixing properties of the ve-
locity and concentration fields are compared. The last
section contains a summary of this work.
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EQUATIONS

This study is based on the continuity equation of
an incompressible fluid, the unsteady three-dimensional
Navier-Stokes equation in the Boussinesq approxima-
tion, and transport equations for the density and con-
centration fields. In the following, z; refers to the
streamwise direction, z3 to the horizontal direction, and
x3 to the vertical direction. The total values of the ve-
locity components U;, the density g, and the concen-
tration fields C; are decomposed into a mean part (de-
noted by an overbar) and a fluctuating part (denoted
by a small character):

Ui=Ui+uw o=2+p Ci=Citca (1)
The mean parts have uniform gradients. In the ver-
tical shear case U; = Svx3d;i and in the horizontal
shear case U; = Syx2d;1. Furthermore g = S,z3 and
Co = Hozo. Summation is implied over repeated Ara-
bic indices but not over Greek indices.

Transport equations for the fluctuating velocity com-
ponents and the concentration fields can be derived
from the equations of motion (e.g. Lesieur 1993):

%“u?u?= —2Syurus — 2SH U (2
3 % _ V@ul 8u1
Po 6m1 dxy, Dz,
d 2 Ous Ouz Ouz
et = 2,202 9,202
dt Utz popawz V@:I:k Oz (3)
d____ 2 6U3 6“3 6u3
il L pTUs g, U TU (g
o= 2 PR & el ol Pl )
R O 362 662
15202 == 2H,%u5¢5 — ka Dor (5)
d - - 8c3 663
ad S _ 9288 Y43 6
dtcy:g 2H3u3¢3 2aazk Er (6)
d__ _ op ap
(_{t-pp - ~2SPu3p 2aP 627]5 awk (7)

Here, v is the viscosity of the velocity field, a the
diffusivity of the concentration fields, and a, the dif-
fusivity of the density field. In these equations Sy is
zero for the horizontal shear case and Sy is zero for the
vertical shear case, A transport equations for the tur-
bulent kinetic energy K = u;u;/2 can be derived from
equations (2) to (4):

d J p— Gu, 3’!!4
—K = -Syuiuz—Syuiuz pOU3p Y o B

p )

The potential energy K, = —ppg/(2p0S,) can be com-
puted from the density fluctuations.

RESULTS

In the next sections, the results from two series of
simulations are presented. The first series has verti-
cal shear and the second series has horizontal shear.
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Both series are vertically stably stratified. In both se-
ries of simulations, the Richardson number is varied
from Ri = 0 to Ri = 0.5. All simulations are initial-
ized with an isotropic turbulence field without fluctua-
tions in the density and concentration fields. The ini-
tial values of the Taylor microscale Reynolds number
Rey = g\/v = 33.54 and the shear number SK/e = 2.0
are fixed. Here ¢ = (@w;)'/? is the magnitude of the

velocity, A = (5v¢°/€)'/? is the Taylor microscale, and
€ = —v(0u;/0xk)(Oui/Ozy) is the dissipation rate. The
Schmidt number S¢ = v/a = 0.72 and the Prandtl
number Pr = v/a, = 0.72 are fixed.

Velocity Field

In this section, the evolution of the velocity field is
discussed. Figure 1 shows the evolution of the turbu-
lent kinetic energy K as a function of the Richardson
number Ri. Initially, the turbulent kinetic energy de-
cays due to the isotropic initial conditions. The fur-
ther evolution depends on the value of the Richardson
number and on the direction of shear. As the Richard-
son number is increased, the growth of the turbulent
kinetic energy weakens for both the vertical and hori-
zontal shear cases. In the vertical shear case, decay of
K is found for Richardson numbers Ri > 0.1. It was
shown by Jacobitz and Sarkar (1998) that Ri > 1.0 in
required to observe decay of K in the horizontal shear
case. Also, for a given Richardson number Ri, the hor-
izontal shear case always shows stronger growth that
the vertical shear case. Details on the evolution of the
turbulent kinetic energy K can be found in Jacobitz
and Sarkar (1998).

The evolution of the ratio of potential energy to tur-
bulent kinetic energy K,/K is shown in figure 2. In the
vertical shear case, the ratio K,/K reaches a constant
value, indicating a similar evolution of turbulent kinetic
and potential energy. In the horizontal shear case, this
ratio tends to decrease in time.

Figure 3 shows the evolution of the velocity compo-
nents u? = wrur, ui = Upuz, and u? = Wzus. The tur-
bulent kinetic energy is unevenly distributed over the
three components. The streamwise component u? is the
largest component. This is due to turbulent produc-
tion adding energy to the streamwise component (see
equation 2). The energy is then redistributed by the
pressure-strain terms into the horizontal and vertical
velocity components. Finally, the buoyancy flux con-
verts vertical kinetic energy into potential energy (see
equation 3). This suggests an ordering u? > u? > u3.
This is indeed found for all Richardson numbers in the
vertical shear case as shown in figure 4. However, the
horlzontal shear simulations show a different ordermg
u? > u? > u2. In the horizontal shear case, the ver-
tical velocity component is larger than the horizontal
velocity component.

This can be explained with a different pressure-
strain redistribution of turbulent kinetic energy from
the streamwise velocity component into the horizon-
tal and vertical velocity components. Figure 5 shows
the evolution of the ratio of the pressure strain terms
—II33/I1;; and —II2/II;; for the vertical and hori-
zontal shear cases. The dependence of the pressure-
strain terms on the Richardson number Ri at nondi-
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Figure 1: Evolution of the turbulent kinetic energy K
as a function of the Richardson number Ri for the verti-
cal shear case (solid lines) and the horizontal shear case
(dashed lines).
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Figure 2: Evolution of the ratio of potential energy to tur-
bulent kinetic energy K,/K as a function of the Richard-
son number R: for the vertical shear case (solid lines) and
the horizontal shear case (dashed lines).

mensional time St = 10 is shown in figure 6. Here,
I11;, = 2pdu1/0z1/po, a2 = 2pOus/Oz2/po, and I3z =
2pOus /0z3/po. Note that II11 + ITs2 + 133 = 0. Gener-
ally, the vertical velocity component receives more en-
ergy than the horizontal velocity component. However,
in the horizontal shear case, that difference is larger
than in the vertical shear case. In the horizontal shear
case, the pressure-strain redistribution is large enough
to compensate for the loss of vertical kinetic energy due
to the buoyancy flux. Therefore, the vertical velocity
component u2 contains more energy than the horizontal
velocity component u2 in the horizontal shear case.

Concentration Fields

In this section, the evolution of two scalar variables
is discussed. The first scalar C2 has a uniform mean
gradient Hy = 8C>/0z> in the horizontal direction and
the second scalar C3 has a uniform mean gradient Hz =
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Figure 3: Evolution of the velocity components u?, u2,
and uj for the vertical shear case (solid lines) and the hor-
izontal shear case (dashed lines). The Richardson number
is Ri =0.2
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Figure 4: Dependence of the velocity components u?,
u2, and u2 on the Richardson number Ri for the vertical
shear case (filled symbols) and the horizontal shear case
(open symbols) at nondimensional time St = 10. Circles
correspond to u?, squares to uZ, and diamonds to u3.

65’;/8:::3 in the vertical direction.

Figure 7 shows the evolution of the fluctuating con-
centrations ¢3 = €3¢3 and ¢ = G263 for the vertical and
horizontal shear cases with Ri = 0.2. In the vertical
shear case, ¢} is much larger than c2. This is consistent
with the ordering of the vertical and horizontal velocity
components with 43 > uZ. In the horizontal shear case,
c3 is only slightly larger than ¢Z. This is in contrast to
the ordering of the velocity components with u2 > u2.
However, c3 is strongly increased in the horizontal shear
case compared to the vertical shear case.

Figure 8 shows the dependence of the fluctuating con-
centrations as a function of the Richardson number at
nondimensional time St = 10. Only in the weakly strat-
ified case with R: = 0.1 the fluctuating concentration
¢} is larger than c% in the horizontal shear case.

The difference in the ordering of velocity compo-
nents and concentration fluctuations can be explained
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Figure 5: Evolution of the pressure-strain ratio

—II33/I11; and —II32 /1111 for the vertical shear case (solid
lines) and the horizontal shear case (dashed lines). The
Richardson number is Ri = 0.2.

with a different production mechanism. The horizon-
tal and vertical velocity components gain energy from
a pressure-strain redistribution from the streamwise
velocity component. However, the production terms
—2Hsuzc; and —2Hsuzcs generate the fluctuations of
the concentration fields (see equations 5 and 6). Figure
9 shows the dependence of the correlation coefficients
R(uacCa) = UaCo/(Uata m)l/ 2 on the Richardson
number Ri at nondimensional time St = 10. In the ver-
tical shear case, the magnitude of R(uz2cz) increases as
the Richardson number is increased, but the magnitude
of R(uscs) decreases strongly and R(uscs) changes sign
for the Ri = 0.5 case. In the horizontal shear case, the
magnitude of R(uzc2) remains almost constant and the
magnitude of R(uscs) decreases slightly. This explains,
first, the ordering of the concentration fluctuations in
the vertical and horizontal shear cases and, second, the
reduced difference between uZ and u? observed in the
horizontal shear case.

Turbulent Mixing

Turbulent mixing of momentum and mass can be
studied by consideration of the eddy viscosity v; of the
velocity field and the eddy diffusivity a: of the con-
centration fields. In the vertical shear case, the verti-
cal velocity gradient results in a turbulent momentum
transport in the vertical direction. In the horizontal
shear case, the horizontal velocity gradient results in a
turbulent momentum transport in the horizontal direc-
tion:

H U1 U2

uUi1uU3
v v _
Su

Vg - SV

9)

The concentration fields have vertical as well as hori-
zontal gradients. Therefore, turbulent mass transport
in the vertical and horizontal directions can be consid-
ered:

u2C2

U3C3 H
V = e — a
H,

ay = Hs

(10)
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Figure 6: Dependence of the pressure-strain ratio

—II33/II1; and —II32/II11 on the Richardson number Ri
for the vertical shear case (filled symbols) and the hori-
zontal shear case (open symbols) at nondimensional time
St = 10. Circles correspond to —II33/II;; and diamonds
correspond to —II22/I1;.

In the following, the eddy viscosity v; and the eddy
diffusivity o are computed from the direct numerical
data.

Figure 10 shows the evolution of the eddy viscosity
v; as a function of the Richardson number R for the
vertical and horizontal shear cases. As the Richardson
number is increased, the eddy viscosity v; is decreased.
However, for a given Richardson number Ri, the eddy
viscosity v# of the horizontal shear case is always larger
than the eddy viscosity v of the vertical shear case.

In order to compare the effect of turbulence on the
mixing of momentum and mass, the turbulent Schmidt
number Sc; is considered. In the vertical shear case,
the turbulent Schmidt number is defined as the ratio
of the turbulent diffusivities of momentum and mass in
the vertical direction. In the horizontal shear case, the
turbulent Schmidt number is defined as the ratio of the
turbulent diffusivities of momentum and mass in the
horizontal direction:

Scy =v{ oy Scfl =vi /ol (11)

The evolution of the turbulent Schmidt number Sc:
as a function of the Richardson number R: is shown
in figure 11. In the vertical shear case, the turbulent
Schmidt number Se¢} increases as the Richardson num-
ber is increased. This is consistent with the results of
Schumann and Gerz (1995). In the horizontal shear
case, however, the turbulent Schmidt number, remains
constant and close to the value of the molecular Schmidt
number Sc = 0.72 for all Richardson numbers.

Figure 12 shows the evolution of the ratio of the verti-
cal eddy diffusivity to the horizontal diffusivity o /af.
In the vertical and horizontal shear cases, the ratio
o Jaf' decreases as the Richardson number Ri is in-
creased. Here, the increasing density stratification in-
hibits vertical transport. The ratio oy /af! is always
larger in the horizontal shear case compared to the ver-
tical shear case for a given Richardson number. In the
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Figure 7: Evolution of the concentration fluctuations c3
and c2 for the vertical shear case (solid lines) and the hor-
izontal shear case (dashed lines). The Richardson number
is Ri = 0.2.
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Figure 8: Dependence of the concentration fluctuations
¢2 and ¢2 on the Richardson number Ri for the vertical
shear case (filled symbols) and the horizontal shear case
(open symbols) at nondimensional time St = 10. Circles
correspond to c¢3 and diamonds correspond to c3.

Ri = 0.1 case with horizontal the ratio is larger than
one.

SUMMARY

Turbulent stratified shear flow has been studied using
direct numerical simulations. Two series of simulations
have been performed. The first series has vertical shear
and the second series has horizontal shear. Both series
are vertically stably stratified. It was found that the
growth of the turbulent kinetic energy weakens as the
Richardson number is increased. However, for the same
value of the Richardson number, the horizontal shear
case shows a stronger growth of the turbulent kinetic
energy than the vertical shear case.

The turbulent kinetic energy is unevenly distributed
over the velocity components. In the vertical shear case,
the velocity components are ordered streamwise > hori-
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Figure 9: Dependence of the correlation coefficients
R(uscs) and R(uzcz) on the Richardson number Ri for
the vertical shear case (filled symbols) and the horizon-
tal shear case (open symbols) at nondimensional time
St = 10. Circles correspond to R(usc3) and diamonds
correspond to R(uzca).
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Figure 10: Evolution of the eddy viscosity v+ as a function
of the Richardson number Ri for the vertical shear case
(solid lines) and the horizontal shear case (dashed lines).

zontal > vertical. However, in the horizontal shear case,
the order is changed to streamwise > vertical > horizon-
tal. The change in the ordering of the horizontal and
vertical velocity components can be explained by an
increased pressure-strain redistribution of energy into
the vertical velocity component in the horizontal shear
case.

In addition, the evolution of concentration fields with
mean gradients in the horizontal and vertical direction
was studied. It was found that the concentration fluc-
tuation of the species with the horizontal gradient is
generally larger than the concentration fluctuation of
the species with the vertical gradient. Only the low
Richardson number case with horizontal shear shows
the opposite result. This result is in contrast to the
finding that the vertical velocity fluctuation is larger
that the horizontal velocity fluctuation in the horizon-
tal shear case. However, it can be explained with a
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Figure 11: Evolution of the turbulent Schmidt number
Sct as a function of the Richardson number Ri for the
vertical shear case (solid lines) and the horizontal shear
case (dashed lines).
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Figure 12: Evolution of the ratio of vertical eddy diffu-
sivity to horizontal eddy diffusivity of /of! as a function
of the Richardson number Ri for the vertical shear case
(solid lines) and the horizontal shear case (dashed lines).

decrease of the vertical correlation coefficient R(uscs)
that controls the generation of vertical concentration
fluctuations.

Finally, the turbulent transport properties of momen-
tum and mass were compared. It was found that the
turbulent eddy viscosities and diffusivities decrease as
the Richardson number is increased. However, the eddy
viscosity is always larger in the horizontal shear case
compared to the vertical shear case for a given Richard-
son number. Also, the ratio of vertical eddy diffusivity
to horizontal eddy diffusivity is always larger in the hor-
izontal shear case for a given Richardson number.
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