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ABSTRACT
This paper describes Direct Numerical Simulations

(DNS) of a low speed channel flow with strong heat
transfer in the normal direction. The Reynolds number
is of order 180 based on the channel half-height and
the mean friction velocity. The low-Mach number ap-
proximation is applied to study the effects of density
variations on turbulence. The data support the valid-
ity of the Van Driest (1951) transformation and suggest
that the additive constant in the log law is a slight func-
tion of the heat flux parameter. A semi-local scaling is
shown to be efficient for the streamwise turbulent fluc-
tuations but not for the normal and spanwise turbulent
intensities. Temperature fluctuations scale with the lo-
cal mean temperature gradient.

MOTIVATIONS AND OBJECTIVES
The supersonic compressible turbulent boundary layer

with or without heat transfer is well documented (see
Bradshaw (1977), Fernholz and Finley (1980) and Spina
et al. (1994) for reviews). Dimensional analysis of the
inner layer shows that the law of the wall can be de-
scribed in terms of two non-dimensional wall param-

eters, the friction Mach number M, = Z—’ and the
heat flux parameter B, = M_Cih’ where u, is

the friction velocity y/Twpw, Cw the speed of sound,
gw the heat flux, C, the constant-pressure specific
heat and T, the temperature at the wall. Two cases
(M;,B,)=(0.08,—0.05) and (0.12,—0.14) were consid-
ered in the DNS study of a supersonic channel flow
performed by Coleman et al. (1995). These data were
found in Huang and Coleman (1994) to support the

validity of the Van Driest (1951) transformation
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and suggest that the additive constant C is a function
of both M, and By.

The case with large heat transfer and small Mach
number has received little attention. The usefulness of
the Van Driest transformation to retrieve the classical
logarithmic law of the wall is not fully accepted in this
case (Cheng and Ng (1982), Wardana et al. (1994),
Wang and Pletcher (1996)). A Large-Eddy Simulation
of subsonic turbulent channel flow with constant heat
flux performed by Dailey and Pletcher (1998) suggests
that when the Mach number is close to O the constant C
depends slightly on heat transfer. In their experiments,
Wardana et al. (1994) study the effect of strong wall
heating on turbulence statistics of a channel flow but
do not use the Van Driest transformation to represent
their mean velocity profiles.

The objective of the present work is to study the
case where the thermo-physical properties vary signif-
icantly in the absence of compressibility effects (M =
M, = 0). We perform a DNS of a low speed flow with
a large temperature gradient. The configuration is a
plane channel flow between two isothermal walls with
temperatures 77 and 75 (see Figure 1). The objective
is to provide more reliable information about the vari-
ation of the constant of integration C' as a function of
B, and to assess the existing scaling laws for the first
order statistics.
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Figure 1: Computational domain.

EQUATIONS
To avoid contamination of the solution by the non-

physical acoustic modes reported in Coleman et al.
(1995), a low Mach number approximation is first ap-
plied to the 3D compressible Navier-Stokes equations.
In doing so, the density is decoupled from the pressure
so that no acoustics are present in the computation.
This also eliminates the acoustic CFL restriction on the
time step size.

To derive the low Mach number equations one ex-
pands the dependent variables as a power series in
€ = yM?, which is a small parameter (see Paolucci
(1982) for a complete discussion). Substituting these
expansions into the Navier-Stokes equations and col-
lecting the lowest order terms in € yields:
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In these equations, all the variables are normalized
using the reference state pref, uref Tref = pref /gref
sz;ef — C; (Tref)’ ‘uref “* (Tref) and kref
k*(T™*f) where the superscript * represent dimen-
sional quantities. Also R, = prefur*fLref/yref and
P, = M”fC;,Ef /k™f are the Reynolds and Prandtl num-
bers while 7y is the ratio of specific heats at the ref-
erence state. The non-dimensionalized velocity vec-
tor, density, temperature and specific heat are u;, p,

Ou; du; 2 lo}
T and C}, whereas T;; = i (% + g — 30ij
and ¢; = k:gTq; are the viscous stress tensor and the
heat flux vector respectively. The P in Eq. (2) may

be interpreted as the hydrodynamic pressure. In the
low-Mach number approximation, the thermodynamic
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pressure P, only depends on time and must be com-
puted if it is not constant. The equation of state is
simply:
P, = PT (4)
Since density is uniquely determined by the temper-
ature (and the thermodynamic pressure which is con-
stant in space), the energy equation acts as a constraint
which is enforced by the hydrodynamic pressure. Com-
bining the equations (1), (3) and (4), this constraint is
(in the case of a calorifically perfect gas):

Oui _ 1 [0¢ 1 / 945
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The time derivative of P, is:
dP, 1 0q; 1 1
Yo ¥ - [ % V:“__‘/qdej
dt VRePr 74 6.’1»'] VRePr s
(6)
and for a closed system, the total amount of mass My
is constant so that:

Po(t) = 57> (7)

NUMERICAL METHOD
The numerical method chosen for solving the variable

density momentum and temperature equations is a gen-
eralization of a fully conservative fourth order spatial
scheme developed for incompressible flows on staggered
grids by Morinishi et al. (1998). It is fourth-order ac-
curate in space, and third-order accurate in time. The
algorithm is dissipation-free, and is thus well suited for
DNS of turbulent flows. The key part is a Poisson equa-
tion with variable coefficient that is solved for the hy-
drodynamic pressure and that ensures that the proper
constraint on the velocity field (Eq. 5) is recovered
at the discrete level. It may be shown that this fea-
ture is needed to avoid violation of the conservation of
kinetic energy in the inviscid limit which would other-
wise arise through the pressure term in the momentum
equation. The existing set of proper finite difference
formulas for incompressible flow (Morinishi et al., 1998)
is generalized to handle arbitrary large density fluctu-
ations with no violation of conservation through the
non-linear convective terms. The algorithm is virtually
fully conservative (mass, momentum, kinetic energy).
Several test cases were designed to check the accuracy
of the method, including: 1) 1D high-amplitude pulse
of density in an inviscid flow, 2) 1D small amplitude
pulse of density in a viscous flow (analytical solution in
Nicoud, 1998), 3) 2D random fluctuations of velocity
and temperature, 4) 2D small amplitude fluctuations
in a channel (growth rate compared to the linear stabil-
ity theory by Suslov and Paolucci, 1995). More details
can be found in Nicoud (1998).



Case Tz/Tl R7-1 - R7-2 Rb My k
A | 1.01 | 182—185 | 2855 | -
B 2 202— 81 | 1786 | Eq. 8
c 2 195 — 164 | 2810 | 1//T
D 4 | 211-151 | 2818 | 1/\/T

Table 1: DESCRIPTION OF THE DNS CASES.

MEAN QUANTITIES
Details of the cases adopted are given in table 1 in

which the indices ’1’ and ’2’ denote the cold and hot
wall respectively. The bulk Reynolds number Ry is
based on the bulk velocity and the values of density and
dynamic viscosity corresponding to the bulk tempera-
ture. In Case A the temperature is almost uniform and
the results may be compared to previous incompressible
DNS performed by Kim and Moin (1987) and Kasagi
(1992) as well as semi-empirical correlations derived by
Kader (1981) for the passive scalar case. In Cases B-D
one expects the temperature (density) variations to be
large enough to modify the momentum balance through
both viscous and inviscid effects. In Case B, the viscos-
ity and diffusivity increase with temperature according
to Sutherland’s law:

wT) =131 ()
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with Sp = 0.648 and S, = 0.368. Combining both
the density and viscosity effects, the Reynolds number
near the hot wall is much smaller than near the cold
wall. The bulk Reynolds is also 30 % smaller than
in the isothermal Case A. In an attempt to separate
the Reynolds number effects from those of density gra-
dients, Case B was redone by assuming that both the
viscosity and the thermal diffusivity decrease when tem-
perature increase viz. p,k o< 1/ V/T. This kind of be-
havior would be relevant to a liquid. Table 1 shows
that, with this inverse temperature dependance, the
Reynolds number is almost independent of the temper-
ature ratio (Cases C and D). The results for Case A do
not depend on the functions u(7") and k(7T) since the
temperature varies only slightly in this case.

In each case the domain size is (47h,2h,47/3h) and
the grid contains 120x100x120 cells. The statistics
were obtained over a time period of order 10h/%;,
where U; = "—"%ﬂz is the mean friction velocity. The
wall normal velocity points are distributed according
to a hyperbolic tangent function for Cases A, C and
D. For Case B, a non-symmetric distribution is used
(Nicoud, 1998) consistent with the change in Reynolds
number. The grid spacing in wall units is equivalent for
all cases with Azt =~ 20, Ayl | ~ 0.3, Ayt ~9
and AzT ~ 6. The molecular Prandtl number is 0.76

Case ].OSCfl lOfog Bql qu
A 6.1 6.1 ~0 ~0
B 6.5 5.6 —0.018 | +0.014
C 7.0 5.0 —0.018 | +0.016
D 8.2 4.2 —0.041 | +0.029
Table 2: FRICTION COEFFICIENTS AND

HEAT FLUX PARAMETERS.
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Figure 2: Additive constant C' as a function of By for
the transformed mean velocity profile. ® : Cases A, C
and D; o : Case B

and buoyancy effects are neglected in all cases. An esti-
mation of the ratio Gr/ Re? (Gr is the Grashof number,
Re = 180) for AT /T = 3/2 (maximum value consid-
ered in the DNS’s) with v = 107 m?/s as a typical
value for hot dry air leads to Gr/Re? ~ (35h)3. Thus
the parameter Gr/ Re? is small compared to unity (less
than 5%) as long as h is smaller than 0.011 m. This
means that the no-buoyancy assumption is justified if
the characteristic length scale of the channel is of order
1 cm or less. This would be a reasonable range for a
true experiment with temperature differences typical of
a laboratory combustion chamber.

Table 2 gives the principal mean physical character-
istics for Cases A-D. The friction coefficient is based on
the mean density in the channel and the maximum ve-
locity. The values obtained for the heat flux parameter
B, are small in absolute value compared to those in
the DNS’s of Coleman et al., 1995 (B, = —0.05 and
B, = —0.14) although the mean channel centerline-
to-wall temperature ratios are equivalent (1.5 for Case
B-C and 2 for Case D, compared to 1.4 and 2.5 for the
compressible channel flow). This is because the dissi-
pation term in the internal energy equation is neglected
in the low Mach number approximation.

Figure 2 shows the additive constant in the logarith-
mic law-of-the-wall for the transformed (as proposed
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Figure 3: Mean velocity profiles. Passive

scalar (Case A). (a): o : Kader’s formula (1981);
. Case B, cooled side, plane (y*,TF); ------ :
Case B, cooled side, plane (y*, 7). (b):
Case C, both sides; ——-- : Case D, both sides, plane
(yt, Ty, e : Case D, both sides, plane (y*,T).

by Van Driest, 1951) mean velocity profile as a func-
tion of the heat flux parameter B,;. Since the slope
in the semi-log plot arises from local arguments in the
fully turbulent region (P. Bradshaw, private commu-
nication), it is not supposed to depend on Bg. Ac-
cordingly, the values given in figure 2 were obtained by
assuming k = 1/2.5 (an accepted value for the chan-
nel flow at R, ~ 180, Kim et al (1987)) and writ-
ing C = Uy p(yt = 100) — 2.51n(100). The value
of C for Case A is 5.5, in agreement with Kim et al.
(1987). Both Cases C and D provide two values of C
corresponding to the heated (B, > 0) and the cooled
(Bq < 0) side respectively. Figure 2 shows that all the
values from Cases A, C and D suggest a slight increase
of C with B, whereas the value from the cooled side
of Case B is clearly out of range due to the very low
value of the bulk Reynolds number (see table 1). No
data for By > 0 was deduced from this case due to the
low value of R,o < 100. It follows that the reliable
variations of C' are of order 1, small enough to be ne-
glected in first approximation. Indeed, a 10% change
in friction coefficient corresponds to a change of about
1.3 in C (Bradshaw, 1977).

The mean temperature profiles for Case A and Case
B are shown in figure 3a and a good agreement is
found between the small temperature ratio Case A and
Kader’s formula (1981) for a passive scalar. The non-
dimensionalization is such that that 77 = P.y* in
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Figure 4: Turbulent fluctuations in semi-local scaling:
(a): W*, (b): ;E*, (c): w? : Passive scalar
(Case A); : Case B, cooled side; ———- : Case C,
both sides; —-— : Case D, both sides.

the limit y* — 0, viz. Tt = (Tw — T)/(ByTw)
or Tt = (T, — T)pwCptr/qw. The linear behavior
for T near y© = 180 is related to the inflexion point
near the centerline. Figure 3a also shows the cooled
side of Case B with the same non-dimensionalization
(yT,TF). A better collapse with Case A is obtained
when a semi-local scaling is used, as suggested in Huang
et al., 1995 (replacing p,, with p(y), py with p(y) and
Ur = \/Tw/pw with u}(y) = /Tw/p(y) and then
defining T* and y* in a similar manner as Tt and
y1). The opposite situation is found when Cases A,
C and D are compared instead. Figure 3b shows that
the different curves collapse very well in the (y*,7'")
plane whereas the semi-local non-dimensionalization
does a poor job. Since T* = T%/p/pw, the pro-
filess T* = T™*(y*) for the cooled and heated side of
Case D are below and above the profile for the passive
scalar case respectively. The reason why the wall scal-
ing (yT,T7") leads to such a good collapse of the Cases
A, C and D is still puzzling. It suggests that, except
for the Reynolds number variation in the normal direc-
tion, the strength of the temperature difference does
not modify the shape of the temperature profile.
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Figure 5: Temperature fluctuations in global coor-
dinates. (a): scaling is T» — T1; (b): scaling is
2h x 0T/ dy|. : Passive scalar (Case A);
Case B; -—-- : Case C; —-—": Case D.

TURBULENT FLUCTUATIONS

Figure 4 shows the turbulent intensities in the stream-

wise (a), normal (b) and spanwise (c) directions for the
different cases. It was shown in Nicoud (1998) that the
results for Case A are in very good agreement with Kim
et al. (1987). For the other cases, the better scaling was
found to be the semi-local one. Figure 4a shows that
all the curves collapse within to a few percent as far
as the streamwise fluctuations are concerned. However,
the scaling is not as good for the normal and the span-
wise components (although it is better than the wall
scaling). A difference in the maximum of vz (figure
4b) and w2 (figure 4c) as high as 35% (between the
two extreme cases considered: cooled and heated sides
of Case D) is found. In both cases, the more nega-
tive or positive the heat flux parameter is, the larger
or smaller the stress becomes. This is however not true
when the Reynolds number changes in the normal di-
rection (Case B, cooled side). The semi-local scaling
remains efficient for the streamwise component but the
normal and spanwise fluctuations are smaller than in
the passive scalar case, even if the heat flux parameter
is negative. However, as mentioned in the previous sec-
tion, the Reynolds number in Case B is so low that the
comparison with Case A may not be relevant.

Figure 5 shows that the temperature fluctuations
scale better when the local mean temperature gradient
is used instead of the temperature difference 15 — T7.
Particularly, the heat flux fluctuations at the wall @,
scale with the mean wall heat flux < ¢ > and the ab-

0.00 0.15

Figure 6: Flow field visualization. Flow is from left to
right. Top: Case A. Bottom: Case D.

solute value of the ratio

¢rms/ < ¢ >

is in the range 0.385 — 0.4 in all cases (Kim and
Moin (1987) found 0.396 for the passive scalar case).
The mean gradient-based scaling also supports the
definition of the integral thermal length scale Ir o
Trms/|0T/0y| as used by Gaviglio (1987) to build
its analogy. The results suggest Lims [00/00] Ry

with Ry =~ 1.34 on the cold sides (value proposed
by Rubesin, 1990) whereas Ry ~ 1.15 — 1.20 on the
hot side (in better agreement with Huang et al., 1995).
Also, the results do not show dramatic changes in the
turbulent Prandtl number, even for high temperature
ratios. They support the usual assumption Py =~ 0.9
fairly well (not shown).

(assessed at the walls)

VISUALIZATION
As previously stated, the Reynolds number on the

heated side of the channel becomes very low if the
molecular viscosity evolves according to Sutherland’s
law. Consequently the size of the turbulent structures
are much higher near the hot wall in Case B (see figure
6, top). The characteristic length scale of the turbu-
lence is basically the same on the two sides of the chan-
nel if both the dynamic viscosity and the diffusivity

701



decrease with temperature as 1/ VT (see figure 6, bot-
tom). In all cases the streamwise velocity-temperature
correlation coefficient is very high near the walls (of or-
der 0.95, as in the previous studies for passive scalar,
Kim and Moin (1987), Kasagi (1992)). Subsequently
the wall heat flux reveals the elongated streaky struc-
ture of turbulence. The temperature field is also a good
marker for the bursting events already observed in pre-
vious studies of isothermal flows. The examination of
higher-order statistics (e.g. the skewness factor of the
u) suggests that the ejection of low-speed fluid is in-
tensified on the heated side (Nicoud, 1998). This is in
agreement with the experimental finding of Wardana
et al. (1994). Further work is needed to clarify this
modification on the turbulence structure.

CONCLUSION

Direct Numerical Simulations of the effects of vari-
able density and molecular viscosity on a channel flow
between two isothermal walls have been performed for
three different temperature ratios (1 —4) and two differ-
ent viscosity laws. The results support the Van Driest
transformation for the mean velocity profile as well as
a semi-local scaling for the streamwise velocity fluctu-
ations. However, neither the normal nor the spanwise
turbulent intensities scale properly with the semi-local
friction velocity /7Ty /p. The better scaling for the tem-
perature fluctuations is based on the local mean tem-
perature gradient. Further work is needed to clarify the
physical effect of the mean density gradient.
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