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ABSTRACT

The particular non-Newtonian fluid under consider-
ation is an incompressible dilute polymer solution. It
has long been known experimentally that certain dilute
polymer solutions may exhibit a significant reduction in
turbulent drag (Ellis, 1970). Thus, understanding the
behaviour of such fluids under turbulent conditions is
of great importance. It is our aim to probe the ba-
sic dynamic properties of a dilute polymer solution,
without any dependence on solid boundary conditions.
Our approach is to study different non-Newtonian equa-
tions, corresponding to different polymer solution mod-
els, via the direct numerical simulation of homogeneous
isotropic turbulence. In this way we have identified
changes within the structure of turbulence itself which
may be related to the ‘drag reduction’ phenomenon.

INTRODUCTION

The study of non-Newtonian fluids is a large and var-
ied field due to the myriad of possible fluid types which
may be produced. The prediction of the behaviour
of such fluids is obviously of immense importance be-
cause of their numerous industrial applications. How-
ever these fluids also generate a great deal of interest
simply because they may exhibit complex, often counter
intuitive, behaviour compared to that of a Newtonian
fluid. At Edinburgh we have focused our attention on
identifying the differences in turbulent structure and
statistics between Newtonian solvents and dilute poly-
mer solutions. It has been found that by dissolving a
small amount of long-chain polymers (~ 4% concentra-
tion) in a Newtonian solvent the mean flow rate within
a pipe or channel may be increased by 50-70% for equal
pressure gradients (McComb & Rabie, 1982), without
the physical nature of the fluid being drastically altered.

A substantial amount of experimental research has
gone into examining dilute polymer solutions mainly
due to their ‘drag reducing’ properties, which were first

discovered by Toms, (1949). Recent developments in
computing have resulted in machines powerful enough
to simulate such flows with Taylor-Reynolds numbers
high enough to form some qualitative agreement with
experimental observations. Hence the trend, to date,
has been to perform computational simulations of dilute
polymer solutions within specific flow domains, such as
turbulent channel or pipe flows.

Since we are interested in identifying the alterations
within the turbulent dynamics produced by the pres-
ence of these polymers alone, we have opted to simulate
our solution within a infinitely repeating cube subject
to periodic boundary conditions. The direct numeri-
cal simulation (DNS) of a Newtonian solvent in such
a domain is a well established and standard technique.
We begin by outlining our general approach to non-
Newtonian turbulence, and then specify the particular
polymer models chosen.

NON-NEWTONIAN TURBULENCE
Any incompressible fluid will obey the momentum
and mass conservation equations,

pDua(x,t)/Dt = —0p(x, t)/0sa+0Tap(x,t) /s, (1)

Bua(x,t)/0z4 =0, (2)

where p represents the density per unit mass, uq(x,t)
the velocity and p(x, t) the pressure. When dealing with
non-Newtonian turbulence the total deviatoric stress of
the solution, 7ap(x,t), is split into two parts, namely
the Newtonian and the polymer contributions,

Taﬁ(x> t) = Olr\;’(xv t) + prﬁ(X, t)v (3)

where 725(x, t) is assumed to be in kinematic form. For
the Newtonian part we have,

Th8(X, t) = 2proeas(X, t), (4)

633



where v is the kinematic viscosity of the Newtonian
solvent and eap(x,t) is the rate of strain tensor. If
we then Fourier transform the momentum conservation
equation and eliminate the pressure term via the incom-
pressibility condition, equation (2), it is easily shown
that in wavenumber (k) space we then have the equa-
tion,

(8¢ + vok®)ua (k, t)
= Maﬁﬂ(k)[/ds.] uﬁ(jat)u"l(k —jv t) - T;‘Y(k7 t) )
(5)
where,
Magpy(k) = (20) 7' [kgDar(k) + kv Das(K)]  (6)
and the isotropic projector Dag(k) is expressed as
Dap(k) = 8ap — kaks|k| ™ (7)

From equation (5) it is possible to model a non-
Newtonian solution provided we have an expression for
the polymer stress. Note that if the polymer stress con-
tribution is zero we regain the Navier-Stokes equations.

Since long-chain polymers are made from many indi-
vidual monomer segments, they have a very compli-
cated internal motion. To model the motion of the
polymers within a fully turbulent fluid, in all their com-
plexity, would be far too demanding computationally,
hence we must seek approximations which mimic the
effect the polymers have on the fluid. Below we discuss
the range of models which we have implemented.

Viscous Increase Model

The concept behind the viscous increase model (VIM)
is very simple and is based on two factors. Firstly, the
size of the polymers will be small compared to the gen-
eral scale of the flow and so we assume that any change
in the turbulent dynamics of the fluid due to polymer
interactions will only occur at small scales. Secondly,
the polymer interactions will result in an increase in the
viscosity of the fluid. This is a plausible assumption as
experimental measurements show that the extensional
viscosity of dilute polymer solutions can be several or-
ders of magnitude greater than that of the Newtonian
solvent, (Metzner & Metzner, 1970).

Thus, we chose a non-Newtonian model with a coef-
ficient of viscosity which differed from the Newtonian
only at small scales. Such a fluid can be modeled by
having a polymer stress contribution given by,

mhs(k,t) = 2v(k)eap(k, t), (8)

where the viscosity of the solution is now a scalar func-
tion of the wavenumber magnitude. The actual form of
the viscosity function is given by,

0 k <kq
y(k) = I/S(k) ka < k < kb (9)
A =1Dwo k>ky

where A\, > 1 and vs(k) interpolates between the two
constant values. For simplicity we chose v;(k) such that
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Figure 1: Graphical representation of the wavenumber
space viscosity of the VIM fluid.

the viscosity is increased at a constant rate over the lo-
cal wavenumber band k., < k < kp. Figure 1 shows
a graphical representation of the total viscosity of the
fluid. For our calculations we chose A\, = 2.5 with
ke = 60% and ky, = 80% of the maximum wavenum-
ber simulated.

Note that realistically the size of the polymers are
such that the scales on which they directly interact with
the turbulence would correspond to a wavenumber re-
gion far higher than is possible to reach with current
numerical simulations. However the investigation of the
VIM is not without rewards as will be discussed later.

Aligned Polymer Model

The aligned polymer model (APM) is a step closer
to a more realistic polymer model. Instead of explicitly
perturbing the scales of the flow as with the VIM, here
we incorporate a polymer stress term which is based
on the actual motion of the polymers within the tur-
bulent fluid. The APM assumes that the length of the
polymers remain constant and that their motion can be
represented by an embedded unit vector field, na(x,t),
giving their directional orientations. The full equations
of motion for such a coupled vector field are given by
Hinch and Leal, (1973), and they ultimately lead to a
macroscopic polymer stress contribution which is de-
pendent on an ensemble average of the dyadic product
of the polymer orientations, (na(x, t)ng(x, t)).

These equations can be simplified by assuming that,
on average, the polymers will align with the instanta-
neous velocity field of the fluid. The justification for
this approximation follows from experimental observa-
tions that high aspect ratio particles tend to align with
the flow direction, (Stover et. al., 1992). A further sim-
plification may be made by comparing the equations of
motion in specific flows (such as steady simple shear
flow) to experimental data for dilute polymer solutions
and adjusting the model parameters accordingly. In
this way it has been shown that the APM polymer stress
contribution may be expressed as, (den Toonder, 1995),

Uo (X, t)u~ (X, t) ua(x, t)ug(x, t)
u(x, t)? u(x, t)?

TEa(X, 1) = Vieay(x, t)

10
where v; is a material constant which depends on(thc)e
solvent viscosity and the polymer concentration. Since
this particular non-Newtonian fluid has a directional el-
ement at each material point, along with viscous effects
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Figure 2: The bead-spring polymer representation of a
FENE Polymer model. For the FENE-P representation the
two end beads are connected by a non-linear spring, such
that the spring force tends to infinity as (R?) — Rpax.

we also expect it to exhibit localised anisotropic proper-
ties. We chose 11 = 17vp, which corresponds to uniaxial
and biaxial viscosities of 20 and 14.51 respectively.

FENE-P Polymer Model

Our third and final model is the finitely extensible,
non-linear, elastic dumbbell, with the Peterlin approx-
imation (FENE-P). For a FENE-P fluid we model the
long-chain polymer as a simple bead-spring dumbbell as
shown in Figure 2. The force in the connector between
the two beads of a polymer at a particular material
point is given by a non-linear spring force,

F((R)) =H [1 - ,§§2> ]_ =HzZ, (11

where H is a constant, R is the length of the polymer
and Rmax is the maximum length. Hence the spring
force tends to infinity as (R?) = RZax. The derivation
of the FENE-P model may be found in Wedgewood and
Bird (1988), here we only highlight the salient features.

The FENE-P model is similar to the APM, in that we
represent the motion of the polymers by a vector field
Ra(x,t), giving their length and orientation at each ma-
terial point. Again the macroscopic polymer stress con-
tribution is a function of the ensemble averaged dyadic
products of the vector field (Ra(x,t)Rp(x,t)) and is
given by,

(Z(x,t)Aap(x, t) = bap),  (12)

rPy(x,t) = nksT
p

where n is the number density, kg the Boltzmann con-
stant and T' the temperature. The dimensionless quan-
tities in equation (12) are, ’

Aasl,8) = TE(Ra(x, ORA(,0)  (13)

and

Z(x,t) = [1 = (1/b)Aaa(x, 8)] 7" (14)

Hence to calculate the polymer stress we must obtain
Aap(x,t). We do this by solving the evolution equation
below,

AaDAqp(x,t)/Dt
= Laa(x, t)Ao-ﬁ(X, t) + Lﬁo’(xy t)AO'Ot(xx t)
—Z(X,t)Aap(X, t) + Sap, (15)

where the constant, Ay, is the relaxation time of the
polymers and Lqag(x,t) is the deformation gradient.
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Figure 3: Evolution of the total energy, (——) New-
tonian, (----- ) VIM, (——=) APM and (—-—) FENE-P.
A statistically stationary state evolves after ~ 5 eddy
turnovers. Total energy

The dimensionless constant appearing in equation (14)
represents the maximum extension, b = HRZ% . /ksT,
and so we have the condition Aaa(x,t) < b. For our
FENE-P calculations we chose b = 50, and nkpTAx/p
such that the ratio of the solvent viscosity to total zero-
shear rate solution viscosity, 8 = 0.5. The viscoelastic
flow is characterized by the dimensionless Weissenberg
number, We = Ay X e, where e is the magnitude of the
rate of strain tensor.

Although this model is more complicated than the
VIM or the APM it is still a rather crude approximation
to a long-chain polymer. However it does embody the
orientational and viscoelastic nature of a dilute polymer
solution.

NUMERICAL PROCEDURE

For our DNS: calculations we followed the spectral
method originally devised by Orszag (1969) for Newto-
nian fluids. The velocity field in wavenumber space is
integrated forward in time via a second order Runge-
Kutta algorithm. The same procedure was used for
the non-Newtonian models with the only modification
to the algorithm being the calculation of the polymer
stresses. All terms in the equations which resulted in
wavenumber space convolutions were accordingly cal-
culated as products in real space to reduce the compu-
tational workload. We performed partial dealiasing by
the random shifting method (Rogallo, 1981) and trun-
cation at /2/3 N, where N was the grid resolution.

For the FENE-P fluid in particular we note that the
equations of motion are known to be unstable numer-
ically. The addition of a small stress diffusivity term,
V2 Aqp(X,t), K € 1, in equation (15) was required to
stabilize the simulation. This procedure was proposed
and investigated by Sureshkumar and Beris (1995), who
showed that the presence of a small diffusivity term will
not affect the general dynamics of the system, but will
increase the stability of the numerics.

Our numerical simulations were all performed on a
512-processor Cray T3D parallel machine with 64 Mb
of memory per processor.
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Figure 4: Time averaged energy spectra for Newtonian
(o) and FENE-P (v7) fluids. Energy spectra for VIM and
APM show similar reduction in energy at high wavenumber
modes.
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Figure 5: The skewness factor, S(t/t.), of the veloc-
ity distributions ( ) Newtonian, (----- ) VIM, (———)
APM and (—-—) FENE-P. We observe, on average, a re-
duction in S(¢/t.) for the non-Newtonian fluids.

RESULTS

In this section we present results from spectral sim-
ulations of statistically stationary turbulence on a 64°
grid. We are currently repeating this work on a 128°
grid, the results of which we intend to present at the
conference. We are restricted to such low resolutions
due to the additional computational cost of calculating
the polymer stress term. For example, at 128° reso-
lution the FENE-P model requires 0.2 CPU-Hours per
timestep compared to 0.05 CPU-Hours per timestep for
the Newtonian simulation.

For ease of comparison, each simulation was per-
formed with the same initial conditions and solvent
viscosity, 9. The energy and timescales depicted are
non-dimensionalised via the square of the time averaged
rms velocity, and the eddy turnover time, respectively.
To avoid any anomalous values the time averaging was
performed only after the statistically steady state had
evolved.

We achieved a statistically stationary turbulent
regime by implementing a low wavenumber forcing
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Figure 6: The Taylor microscale A(t/te), (——) New-
tonian, (----- ) VIM, (——=) APM and (—-—) FENE-P.
This represents an approximation to the spatial correla-
tion length within the fluid. A(t/t.) generally appears to
be higher for the non-Newtonian fluids, with a marked
increase observed for the FENE-P.

scheme which results in a constant energy input rate,
as detailed in McComb et. al (1997). Figure 3 shows
the time evolution of the total energy where it can
clearly be seen that a steady state was reached after
approximately 5 eddy turnovers. The simulations had
a Taylor-Reynolds value, Rx ~ 80 and for the FENE-
P, We ~ 3.5 and (Aaa(x,t)) ~ 0.7b. An important
indication of the turbulent dynamics is given by the
energy spectrum. This was calculated by means of a
shell averaging technique in wavenumber space. For
isotropic systems this is equivalent to performing en-
semble averages over many realizations. However for
this approach to be valid we must ascertain whether
our non-Newtonian fluids are indeed isotropic. We em-
ployed a similar method to that of Curry et. al. (1984),
and it was found that for each simulation the isotropy
factor, I, fluctuated by a few percent around a value of
1, hence we conclude our simulations were close enough
to ‘perfect isotropy’, I = 1, for shell averaging to be
valid in all cases.

In Figure 4 we plot a comparison between the time av-
eraged energy spectra of the FENE-P model and that of
the Newtonian simulation. We note that qualitatively,
the spectra for the VIM and APM (not plotted) are
very similar to that of the FENE-P. The non-Newtonian
fluids all exhibit a steeper gradient with an energy de-
crease at high wavenumbers and a slight increase in
energy at lower wavenumber modes, compared to the
Newtonian case. It is interesting to note that the en-
ergy decrease in the VIM fluid was over a range of scales
outwith the localised wavenumber band where the poly-
mer stress term is non-zero. This result highlights the
strongly non-local nature of turbulence in general in
that a relatively small increase in the viscosity (A.) at
high wavenumbers will alter the dynamics of the flow
over all scales. The spectra displayed in Figure 4 are
similar in character to those found experimentally in
dilute polymer solutions (McComb & Rabie, 1982) and
more recently for drag reducing surfactant suspensions,
(Schmidt et. al., 1999).



Figure 7: Iso-surface plots of the vorticity for the Newto-
nian fluid at 20 t/t.. The magnitude of vorticity plotted
are for a value of 60% of the maximum vorticity.

Figure 9: Iso-surface plots of the vorticity for the APM
fluid at 20 t/te. The magnitude of vorticity plotted are
for a value of 60% of the maximum vorticity.

Figure 8: lso-surface plots of the vorticity for the VIM
fluid at 20 t/t.. The magnitude of vorticity plotted are
for a value of 60% of the maximum vorticity.

The skewness factor of the velocity derivative distri-
bution is representative of the average energy transfer
efficiency from low to high wavenumber modes. Again
the VIM, APM and FENE-P models all display sim-
ilar characteristics, with a reduction in the skewness
factor for each compared to that of the Newtonian as
illustrated in Figure 5. This drop in energy transfer
efficiency is consistent with the energy spectra results.
In which more energy appears to be present within the
lower wavenumber modes.

Another clue as to the changes in turbulent structure
of the non-Newtonian models may be found in the value
of the Taylor microscale, A(t/t.). This can be thought
of as an approximate indicator of the spatial correlation
length within the fluid. Figure 6 shows the evolution
of A(t/te) for each simulation, we observe an increase
for all non-Newtonian models with a marked increase
in correlation for the FENE-P model. Since the VIM
and APM represent viscous and anisotropic properties,

Figure 10: Iso-surface plots of the vorticity for the FENE-
P fluid at 20 ¢/t.. The magnitude of vorticity plotted are
for a value of 60% of the maximum vorticity.

we may attribute this large deviation from the other
models to the elastic properties of the FENE-P.

To further investigate the turbulent structures it is
helpful to examine three dimensional iso-surface plots
of vorticity magnitudes. These are illustrated in Fig-
ures 7 - 10, for each fluid. The iso-surface plots display
the evolved vorticity fields after 20 eddy turnover times
and so are representative of the fully turbulent, statis-
tically stationary state. By viewing several such vor-
ticity plots we see that, in general, the non-Newtonian
fluids all display longer vorticity structures compared
to that of the Newtonian fluid. This is consistent with
the earlier Taylor microscale results which indicated a
longer spatial correlation length. Also by increasing
the magnitude of the iso-surfaces of vorticity plotted,
it was found that the presence of these structures de-
clined more rapidly than in the Newtonian case. These
results bear some resemblance to the experimental ob-
servations where small scale structure has been sup-
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pressed by drag reducing polymer additives, (McComb
et. al., 1977).

Here we have plotted the iso-surfaces of vorticity with
the magnitude at a value of 60% of the maximum. This
value was chosen as we still observe distinct differences
in structure between Newtonian and non-Newtonian
fluids. However, it is also possible to notice differences
between the non-elastic VIM and APM fluids and that
of the FENE-P.

It is interesting to compare the FENE-P model (Fig-
ure 10) to that of the APM (Figure 9). Although the
average polymer length remains almost constant the
FENE-P exhibits a vastly different vorticity structure
to that of the APM. The average length of the FENE-P
vorticity structures are almost double that of the APM
and seem to readily exist in close vortex pairs. Since the
the average polymer length remains almost constant we
can attribute this to localized elastic properties of the

FENE-P.

CONCLUSIONS

From the range of model types implemented it was
found that the statistical results from the VIM, APM
and the FENE-P were similar, albeit in a qualitative
sense. Each model displayed characteristics which are
apparent in actual drag reducing dilute polymer solu-
tions, such as the attenuation of the energy spectrum
at high wavenumbers and the reduction of small scale
structure. The presence of the polymer additives ap-
pear to reduce the energy transfer efficiency of the so-
lution, resulting in more energy being contained within
the lower wavenumber modes. Consequently larger vor-
tex structures appear within the flow. This seems to be
similar to a proposed mechanism for drag reduction in
channel flow outlined in Dimitropoulous et. al., (1998)
whereby the presence of wider wall eddies are thought
to be responsible for the observed drag reduction.

From the VIM and APM simulations we can con-
clude that increased viscous actions and the presence of
localised anisotropic properties demonstrated by dilute
polymer solutions have an important role in the drag re-
duction process. Although these conclusions have been
reached before, (den Toonder, 1995) we have discovered
that these properties are inherent in isotropic turbu-
lence and are not restricted directional flows with solid
boundary conditions.

Finally, from the iso-surface vorticity plots, we con-
clude that to accurately model a polymer with elastic
properties, we must take account of the localized elastic
nature of the flow, otherwise the resulting dynamics of
the solution will be significantly different.

At the conference we intend to present similar re-
sults but implemented on a 128% grid, this should give
a higher Taylor-Reynolds number and a larger range
of wavenumbers. Hence we expect to find similar but
more pronounced effects. We also hope to investigate
decaying turbulence as we may find certain features of
the turbulent behaviour of these non-Newtonian fluids
that are unobservable during steady state simulations.
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