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ABSTRACT

Thermodynamic variables exert a strong influence on the
flow field in high-speed combustion. Direct simulation of the
shear layer is used to investigate the coupling between ther-
modynamic fluctuations and the turbulent flow in subsonic-
to-supersonic regimes and over a wide range of density ratios.
The high-speed effect is parametrized by the convective Mach
number, M., while density heterogeneity is characterized by
the ratio of free-stream densities, s = py/p1. With increas-
ing M., a large reduction in thickness growth rate is observed.
Analysis and direct simulation is used to offer a mechanism
based on the finite speed of pressure fluctuations and conse-
quent temporal decorrelation to explain the reduced growth
rate in the high-speed regime. The character of the underly-
ing thermodynamic fluctuations is found to change from the
uniform density case to the non-uniform cases. The acous-
tic mode dominates the former while the entropy mode dom-
inates the latter. An increase of the density fluctuations, with
increasing s, is observed while pressure fluctuations decrease.

1 Introduction

Non-premixed combustion in the high-speed regime involves
strong coupling between the turbulent flow, thermodynamic
variables and chemical species which is poorly understood.
The effects on the flow field, in the case of low-speed react-
ing flows in an open domain, is primarily through changes in
the density. In the high-speed regime, both density and pres-
sure changes are potentially important. DNS is a powerful
and viable tool to investigate the influence of thermodynamic
fluctuations on the turbulent flow and associated scalar mix-
ing. Recent DNS studies of the the non-reacting high-speed
shear layer include Vreman et al. (1996) while that by Miller
et al. (1994) considers a simple, one-step exothermic reaction,
in addition. The current paper focuses on the effects of high
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Mach number and of large density variation on the flow and
scalar mixing.

At high Mach number, the growth of the turbulent shear layer
is substantially reduced. This stabilizing effect is one of the
most remarkable features distinguishing compressible turbu-
lence from its incompressible counterpart. Observations of
the reduced growth rate at high speeds are numerous. Early
experimental evidence is discussed by Bradshaw (1977), and
Kline et al. (1982) while later experimental and numerical in-
vestigations are reviewed by Lele (1994) and Smits & Dus-
sauge (1996).

The convective Mach number, M, introduced by Bogdanoff
(1983) has become popular as the parameter that determines
compressibility effects. Denoting the velocity, density and
speed of sound in the high-speed stream by Uj, pg, ¢ and
corresponding quantities in the low-speed stream by U, pa,
¢y and, assuming equal specific heats, gives M, = (U; —
U)/(c1 + c2). From experimental data, see Figure 1 for ex-
ample, it is clear that there is a general trend of decreasing
thickness growth rate with increasing values of M,. In the
case of high-speed propulsion, there is an additional effect,
namely, density changes due to changes in composition and
heat release. Therefore, the related question of how the den-
sity ratio, s = pa/p1, affects the growth rate is of interest.

Identification of the mechanisms responsible for the inhib-
ited shear layer growth at high Mach number is of interest
both to gain a fundamental understanding of the problem as
well as to derive insights into possible mixing enhancement
strategies. DNS studies by Sarkar (1995) of uniformly sheared
flow, by Vreman et al. (1996) of the plane shear layer, and by
Freund et al. (1997) of the annular shear layer show that the
turbulent production decreases with increasing Mach num-
ber. Thus, a reason, based on turbulence energetics, for the
reduced thickness of the shear layer is decreased turbulent
production. Investigation as to why compressibility reduces



turbulent production is now required. Reduced pressure fluc-
tuations with increasing Mach number has been observed by
Vreman et al. (1996) in the shear layer, by Sarkar (1996) in
the uniformly sheared case, and by Freund et al. (1997) in the
annular mixing layer and has prompted suggestions that the
compressibility effect is linked to pressure fluctuations. How-
ever, a complete mechanistic explanation is lacking and is an
objective of this work.

There is no systematic study that studies the effect of den-
sity ratio on the flow and mixing at high speeds. Therefore,
a DNS study is conducted here by varying the density ratio
while keeping the Mach number constant. The relative im-
portance of the ‘acoustic’ mode and the ‘entropy’ mode in the
thermodynamic fluctuations is also obtained.

2 Problem Formulation

The unsteady, three dimensional, compressible Navier-
Stokes equations are solved for the temporally-evolving shear
layer. The energy equation is written as a pressure equa-
tion where viscosity, diffusion, thermal conductivity and the
specific heat ratio are constants. The equation of state cor-
responding to an ideal gas is assumed. A passive scalar is
computed along with the flow variables.

2.1 Numerical Scheme

The transport equations are integrated using a 3-4-3 order of
accuracy compact Padé scheme in space as described by Lele
(1992). The time advancement is performed with a fourth or-
der of accuracy low storage Runge-Kutta scheme as described
by Williamson (1980). Periodic boundary conditions in x;
and x3 directions are used and ‘non-reflective’ boundary con-
ditions as studied by Thompson (1987) are imposed in the x;
direction . A uniform grid is used. In order to avoid spurious
numerical instabilities introduced by the boundary conditions
in the x; direction, the flow variables are filtered every time
step using a compact filter described by Lele (1992) of the
same accuracy ie; fourth order, as the spatial discretization.
Sufficient resolution is used and the filter coefficient chosen
as discussed by Lele (1992) to significantly affect only the
highest wave numbers. The integration of the scalar variable
is performed using a non linear integration scheme. The flux
corrected transport scheme as described by Zalesak (1979) is
chosen. This scheme guarantees that the passive scalar is kept
between its bounds of 0 and 1.

2.2 Initial Conditions

The flow is initialized to a hyperbolic tangent profile for the
mean streamwise velocity, i (x;), while all other mean ve-
locity components are set to zero. The upper stream has a
velocity, —Au/2, and the lower stream has a velocity, Au/2.
The mean pressure is set to a uniform value p,. The density in
the upper stream pp, and that in the lower stream p,, are spec-
ified. The convective Mach number introduced by Bogdanoff
(1983) and further studied by Papamoschou & Roshko (1988)
is defined in the case of two streams with the same specific
heat ratio y, by M, = Au/(cy +c2), where c; and c; are the
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Case M, K LyxLyxL, NxxNyxN,

A3 03 1.0 690x517x345  256x192x128
A7 07 1.0 690x517x345  256x192x128
All 1.1 1.0 690x1142x345 256x384x128
B4 07 40 690x517x345  256x192x128
B8 0.7 80 690x517x345  256x192x128

Table 1. Simulation parameters. Ly, Ly, and L, denote com-
putational domain lengths measured in terms of initial momen-
tum thickness while Ny, N, and N, denote the corresponding
number of grid points.

speeds of sound of each stream. In addition to these mean val-
ues, broadband fluctuations are used to accelerate the transi-
tion to turbulence. This is achieved by generating a solenoidal
random field with an isotropic turbulence spectrum.

2.3 Simulation parameters

Two series of simulations are conducted. The parameters of
series A are chosen to analyze the effects of M, (compress-
ibility) and those of series B to analyze the effect of variable
density for a fixed M, = 0.7 case. The density ratio is defined
as s = p2/p1. The average density, p, = (p1 +p2)/2 =0.7,
is fixed in all the simulations. In series A, the mean density is
uniform, while, in series B, the mean density profile is initial-
ized to a hyperbolic tangent profile. The nondimensional pa-
rameters in the governing equations are Re = 1142.8, Pr=20.7
and Sc = 1.0 while y = 1.4. The computational domain is
given in Table 1, where the physical domain is measured in
terms of the initial shear layer momentum thickness 8g(0).
Such large domains are required to allow evolution to the self-
similar state. The initial momentum thickness Reynolds num-
ber is Reg = 40 while the Reynolds number based on vor-
ticity thickness has an initial value of Req = 160. The final
Reynolds numbers are large enough for turbulent flow, reach-
ing values as large as 12,000. The integral length scales are
sufficiently small compared to the dimensions of the compu-
tational box to have good large-scale resolution and the grid
size is sufficiently small to resolve the small scales.

3 Analysis of the Compressibility Effect of Re-
duced Growth Rate

Figure 1 shows that the growth rate decreases with increasing
M, in the DNS, in close agreement with the Langley curve.
Sarkar (1995), based on uniformly sheared flow DNS, sug-
gested that decreased production is responsible for the reduc-
tion, with increasing Mach number, of the vorticity thickness
growth rate and turbulent kinetic energy of the shear layer. In
the case of the momentum thickness of the mixing layer, the
compressibility effect of decreased growth rate must be asso-
ciated with reduced level of normalized, integrated turbulent
production according to Vreman et al. (1996). The current
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Figure 1. Dependence of the growth rate on M,.

DNS also finds that the production, P, decreases with M. The
Reynolds stress transport equations provide a simple yet ef-
fective method to further analyze the effect of compressibility
and is considered below to answer the question as to why the
Reynolds shear stress and, thereby, the turbulent production is
inhibited in high-speed, compressible flow.

3.1 The Reynolds Stress Balance at High Speeds
The normalized transport equation for Ry is analyzed and
after integrating across the self-similar coordinate, and intro-
ducing the overbar to denote the density-weighted integrals,
the following equation for the growth rate, 8¢, is obtained:

8o ~ (811 — 1) 1

where € = ffm(ﬁ/po)(ell/Au3)dx2 and Tl =
[ (M1 /poAu®)dxy. From the DNS results, it is observed
that the convective Mach number, M,, affects &1 — I1j;
by reducing its magnitude (notice that [1j; is negative)
and, subsequently, the momentum thickness growth rate is
reduced. Only ITj; is strongly affected by M., suggesting
that the effect of M, on the pressure-strain term is responsible
for the reduction of the shear layer growth rate. The pressure
strain term can only be reduced if the intensities of p' or
uy /ox; are reduced. From the DNS it is clear that the
dominant reduction is in the rms pressure.

After confirming that the compressibility effects of reduced
thickness growth rate and turbulence intensities are related to
decreased pressure fluctuations, we now propose a mechanism
for the altered pressure field.
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3.2 The Pressure-Strain Term at High Speeds

In strictly incompressible flow, the instantaneous pressure
has ‘infinite’ signal speed and satisfies a Poisson equation
whose source is related to the velocity gradients. In the case of
compressible flow, pressure fluctuations travel with the speed
of sound, co. The consequence of a ‘finite’ signal speed on
the pressure-strain term is now studied analytically.

The following evolution equation for p’ s

1 '
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can be derived by taking the divergence of the momen-
tum equation, and assuming that the isentropic relationship,
Dp/Dt = c2Dp/Dt, applies and viscous terms are negligible.
Such assumptions are reasonable for high-Reynolds number
flows away from shocks and solid boundaries. Eq. (2) is now
specialized to the center of the shear layer where the mean
velocity is zero, dii] /dxp ~ constant, and an analysis, assum-
ing locally-homogeneous turbulence, is performed. The re-
sult, for low Mach number, is

i
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which shows that IT;; decreases with M, as in the DNS.

The wave equation, Eq. (2), for the pressure is a useful ap-
proximation for analysis and is consistent with the energy
equation, if the heat conduction and viscous dissipation terms
are assumed negligible and the isentropic relation is assumed.
These assumptions, although useful, are not physically sup-
ported for My >> 1. Therefore, at high Mach number, the
general thermodynamic relation must be used,

Dp _(dp\ Dp  (dp
Dt \dp);Dt " \ds ),

where the first term on the rhs is the ‘acoustic’ contribution
and the second term is the ‘entropy’ contribution. Indeed, by
taking the time derivative of Eq. (4) and using the divergence
of the momentum equation, a modified wave equation for
the pressure fluctuation results which involves entropy fluc-
tuations and is valid for all Mach numbers. Analysis of the
modified wave equation shows that I1;; — const, for large M.
Thus, analysis provides functional forms for small and large
Mach numbers.

A quantitative expression for the pressure-strain correlation
which has the analytically predicted behavior at low and high
Mach number is,
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M. by b b
0.3 021 -0.08 0.18
0.7 037 -0.20 0.18
1.1 044 -025 0.17

Table 2. Peak values of the Reynolds stress anisotropy during
its early-time evolution.

Mc bu  bn b
03 008 -0.06 0.15
07 0.10 -0.08 0.15
1.1 011 -0.09 0.15

Table 3. Long-time values of the Reynolds stress anisotropy.

where l'[f j s the predicted incompressible pressure-strain and
the constants, a = 4.0, b = 4.1 and ¢ = 0.091 were obtained
by fitting to the ‘experimental’ values the asymptotic solu-
tions, and using an exponential to approximate the difference
at intermediate Mach numbers.

4 Anisotropy of the Reynolds Stress

The Reynolds stress anisotropy is an important characteris-
tic of the velocity fluctuations that is used in advanced mod-
eling of turbulent flows. = Two important conclusions are
drawn from the DNS. First, during its initial evolution, the
anisotropy tensor is strongly affected by M., whereby larger
magnitudes of the diagonal components of b;; are measured
for increasing M,. Table 2 illustrates this trend using the peak
anisotropies during the early-time transient. Second, after suf-
ficiently long time, the values of the anisotropy tensor ap-
proaches asymptotic values that are only weakly dependent
on M.. Table 3 shows values from the self-similar region,
where a weak increase of the normal stress anisotropies with
M_ is observed while the off-diagonal component b, remains
constant. The peak values of turbulence intensities and shear
stress at the center of the shear layer can also be considered
and are preferable in comparing with experimental data. Com-
parisons with experimental results obtained by Samimy & El-
liot (1990) and Barre et al. (1994) are in good agreement with
the DNS.

5 Density Effect on the Growth Rate

The aim of series B is the study of the effect of density ra-
tio on the growth rate. In this series, two parameters have
been kept constant, the convective Mach number, M, and the
average density, po, = (p1 +p2)/2. Results corresponding to
s =4 and 8 are shown. Note that s > 1 implies that the upper
stream has the lower density. Simulations with the reciprocal
density ratios, s = 1/4,1/8, were also performed but no differ-

56

[

Cs
0.117
0.137
0.125

o K o=

Table 4. Cg dependence on s for M, = 0.7.

ence was observed with respect to the s = 4, 8 cases regarding
the growth rate. The influence of the density ratio on tempo-
ral growth rates of the vorticity thickness and the momentum
thickness are investigated.

From similarity arguments, Brown (1974) derived an expres-
sion for the vorticity thickness growth rate dependence on the
velocity and density ratios. The growth rate in a frame moving
with the convection velocity, Up, is defined by

hudi 0TS ©

Brown (1974) states that, although Cg can be assumed inde-
pendent of s, based on limited data available for low-speed
flow, the convection velocity, U, shifts to the velocity of
the high-density stream. Therefore, the spatial growth rate is
modified by unequal free-stream densities. Brown (1974) and
later Dimotakis (1984) proposed an expression that matched
experimental data. Since the current DNS corresponds to a
temporally evolving flow in a reference frame mandated to
move with the convection velocity U, conclusions can be
drawn with respect to the effect of s on solely Cs and not U.
Table 4 gives the values of Cg for various density ratios and
M, =0.7. It is clear that there is no appreciable dependence
of Cs on s in high-speed flow similar to the finding of Brown
(1974) at low speeds.

Unlike the vorticity thickness, the growth rate of momentum
thickness is found to decrease strongly with changes of den-
sity ratio from its reference value, s = 1. An analysis based
on an expression which relates g to the product of mean den-
sity and Reynolds shear stress, PRy, integrated over the shear
layer, is performed to understand the influence of s. DNS re-
sults show that the peak values of Ry, do not change with s.
However, there is a shift of the Ry, profile towards the low-
density stream. These observations together with the analysis
predicts a density dependence of the form

.5—9 =1—0.4A(s)a(s) @)
d9,1

where A(s) = (s—1)/(1+s), and a(s), which is obtained from
the DNS database, is a measure of the shift between density
and velocity profiles. Table 5 shows that Eq. (7) agrees well
with DNS results.



s 8o/801 1—0.4M(s)a(s)
1 1.00 1.00
4 0.86 0.82
8 0.59 0.70

Table 5. Density ratio effect on growth rate ratio.

6 Density Effect on Thermodynamic Statistics

Analysis of thermodynamic statistics reflect important
changes due to the density differences. The case M, = 0.7
is studied for density ratios of 1, 4 and 8. Consistent with the
decrease of momentum thickness growth rate, there is a de-
crease of the pressure rms with increasing s. Nevertheless, the
strongest effect of s is observed on the density and tempera-
ture fluctuations. Increases of up to one order of magnitude
are observed for p,ms in Figure 2 as well as Ty, (not shown)
with increasing values of s.

The temperature-density correlation, shown in Figure 3,
shows a strong anti-correlation between fluctuations in 7' and
p for the non-uniform density cases. Indeed, in the core of
the shear layer, the correlation coefficient, r7p — —1, indicat-
ing dominance of the ‘entropy’ mode. The pressure-density
correlation, not shown, changes strongly from the case s =1
to the cases s = 4,8. The strong near-unity correlation coeffi-
cient indicative of the ‘acoustic’ mode that is observed in the
uniform density case progressively changes to lower values
until negative values are achieved.

The turbulent Prandtl number, Pry, is obtained from the DNS
data. There is little effect on the turbulent Prandtl number,
with nominal values in the core of the shear layer ranging from
0.72ats=1,0.81 ats =4 and 0.9 at s = 8.

7 Scalar Dissipation

The scalar dissipation, ¥ = uV{-V{/p, is the appropriate
inverse ‘fluid mechanical’ time scale which should be com-
pared with the chemistry time scales in order to determine the
importance of finite-rate chemistry as discussed by Libby &
Williams (1993). The normalized scalar dissipation is shown
in Figure 4, where a relatively constant peak level of % is ob-
served, when scaled with the vorticity thickness and mean ve-
locity difference. Similar to the effect on Reynolds stress pro-
files, the major effect of density ratio on scalar dissipation is
the shift of peak y to the low-density side.

8 Conclusions

The effect of the convective Mach number, M., as well as
the density ratio, s, are studied for the turbulent shear layer.
Large values of the Reynolds number are achieved which al-
lows self-similar turbulence statistics. Based on analysis and
DNS observations, a mechanism is proposed to explain the
the important effect of compressibility that reduces the growth
rate of the shear layer. This mechanism is directly related to
the finite speed of sound, that leads to increased decorrelation

prms/p o

Tp
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Figure 2. Density and Pressure fluctuations dependence on
the density ratio, s.

Figure 3. Density-Temperature Correlation.
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Figure 4. Normalized Scalar Dissipation.

in time between the pressure at adjacent points in the flow with
increasing values of M,. Consequently, the pressure-strain
term, that provides the turbulence redistribution necessary to
maintain shear-driven turbulence, decreases.

When the density ratio is varied for the M, = 0.7 case, it is
found that, although the vorticity thickness is insensitive to
changes in s, the momentum thickness growth rate decreases.
Interestingly, flipping the density ratio to 1/s from s has no
influence on the growth rate of the temporal mixing layer. The
maximum shear stress #v is found to remain invariant with
s; however, its location shifts to the low-density side, thus,
decreasing the momentum thickness growth rate.

When the density ratio increases, the density and tempera-
ture fluctuations are found to increase strongly while the pres-
sure fluctuations decrease. The ‘entropy’ mode is found to
dominate the ‘acoustic’ mode in the case of nonuniform den-
sity. The peak scalar dissipation rate, when normalized by
the velocity difference and vorticity thickness, is found to be
relatively insensitive to density ratio.
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