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ABSTRUCT

In a zero-pressure gradient turbulent boundary layer,
we made a multi-point measurement by 24 I-probes in
an area from 7.0 to 322.0 in wall unit. The log-law re-
gion is defined first by the invariant assumption of pdfs
which is a new idea to fix the logarithmic velocity ex-
tent, and then the relation to the coherent structures
are considered by POD technique and stochastic esti-
mation. Coherent structures play an important role to
make up the log-law profile and they are almost the
same order of log-law region.

INTRODUCTION

In a zero-pressure gradient turbulent boundary layer,
we think about a relation between mean velocity profile
and coherent structures by analyzing the experimental
data measured in low Reynolds number flow. One of
the recent interesting topics is the mean velocity profile
in a wall bounded shear flow.(*) So far, the logarithmic
profile is considered as a firmly established result and
has been believed to be a universal scaling law. How-
ever, the recent research cast doubts about its existence,
in which the universal scaling is regarded as a power-
law distribution.® In a low Reynolds number flow, the
difference between these two scaling laws is very little,
and no clear discussion may be impossible to predict
which scaling law is preferable. Therefore, we will not
comment this issue but think about the reason why the
universal scaling law is realized. If the logarithmic re-
gion is a good representation of the experimental data,
what the log-law region is indicating? Is there any phys-
ical phenomena to predict the scaling law? These are
our motivations to start this study.

We assume that the coherent structure is a key factor
to think about the extent of logarithmic velocity pro-
file. Proper orthogonal decomposition is used to detect
it, and the relation to the log-law region is considered.

We have presented the idea to define the log-law region
by using the probability density function (pdf) of the
normalized streamwise component. Logarithmic region
is defined as the extent where the pdf profile remains
unique.® We call this the invariant assumption of pdfs,
which has been confirmed to give a reasonable logarith-
mic region in moderate Reynolds number flows. Then
the question is whether the invariant assumption is bro-
ken off by the coherent structure or not.

~

EXPERIMENTAL CONDITION

In a wind tunnel with a test section 0.32 x 1.06m in
area and 2.6m in length, a typical two-dimensional tur-
bulent boundary layer is generated. The data are mea-
sured at 1900mm downstream from the leading edge
with using multi I-type probes. The rake is consist of
24 probes in which each probe is made of tungsten wire
with 5um in diameter and 1.0mm in length, and it is
separated by 1.0mm with each other. They are located
from 7.0 to 322.0 in wall unit. A schematic diagram is

shown in Fig.1.
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Fig. 1 Schematic view of the rake.

37



Free stream velocity is Uy = 5.0m/s, nominal bound-
ary layer thickness is § = 40.0mm, and the Reynolds
number based on the momentum thickness is Ry =
1320. The probes are operated by a handmade constant-
temperature anemometer (see Fig. 1(b)), and the ana-
log signal is sampled by 12-bit A/D converter with 5kHz
sampling frequency which is linearized by a computer.

The measured mean velocity and the r.m.s. velocity
distributions are indicated in Fig.2. The dashed line is
a result measured by a single I-type probe in the same
experimental condition. They agree well each other.
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Fig. 2 Mean velocity and the turbulent intensity dis-
tribution in this measurement. The dashed line is the
result measured by a single probe at the same condition.
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THE PROCEDURE TO EXTRACT THE
LOG-LAW REGION

The extent of the logarithmic region is classically con-
sidered as an equilibrium region where the total shear
stress is constant.?) But the “equilibrium” is interpreted
here as the condition that the pdf profile of the normal-
ized streamwise velocity component does not change.
That is, the pdf profile remains unique in the log-law
region. We call this idea the invariant assumption of
pdf profile.

When the instantaneous velocity in streamwise com-
ponent is decomposed into mean and fluctuation as & =
U + v/, we think about the pdf of normalized velocity;
u = u'/ur, where u, is r.m.s. value of «’. If the invari-
ant region of the pdf profile exist, we regard this as the
log-law region.

In experimental data analysis, the invariant assump-
tion of pdfs is a little relaxed. We extract the region
where the pdf has a “similar” profile but not the “same
” one. The Kullback Leibler divergence (KLD)® is
used to distinguish the pdf’s profile, which is defined
as,

D(P||Q) =) P(si)log. (P(s:)/Q(s:)), (1)
{s}

where P(s) and Q(s), {s} = {s1,s2,--}, are discrete
probability distributions. KLD has a non-negative value
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for any P(s) and Q(s), and it is zero only when P(s)
is the same with @(s). As KLD has a smaller value,
then P(s) and @(s) are more similar. That is, it is a
indicator to evaluate how much P(s) resembles Q(s).

A typical example is shown in Fig. 3, in which KLD is
computed by the probability distributions obtained at y
and y'. In the inner region KLD is small and this means
that the pdf profiles resemble each other. We introduce
the threshold value I';;, and find out the region [y;*, y.j,']
subject to the condition,

D(Py”Py') < Fth ) Vyv Vyl € [yfvy;] ’ (2)

where P, and P, is the probability distribution mea-
sured at y and y', respectively. The threshold is indicat-
ing the criterion how much P, and P, resembles each
other. When I';p = 0, probability profiles are exactly
the same with each other. However, for a given I';1, the
extent [y{F uT ] is not fixed uniquely.
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Fig. 3 A typical example of KLD computed by the
streamwise velocity component.
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Fig. 4 (a) The extent [y], y7] defined by Eq. (2) for the
original u fluctuation. (b) The extent [y;", y5] defined
by Eq. (2) for the reconstructed velocity signal u* in

Eq. (5).



Then we condition that the distance L = yf — yi
has a maximum value. In Fig.4(a) the extent [y{", y;]
is plotted against the threshold. When I';, increases,
y¥ also increase, but y} approaches the constant value.
Once y; reaches the constant, the log-law region is de-
fined (see Fig.4(a)).®®) The pdf profiles are very different
at close to the wall, therefore, yf does not change for
large ['tp. The minimum yi" is about 30 in wall unit
independent of Reynolds number. The previously ob-
tained results are shown in Fig.5 in which the log-law
region is indicated as solid symbols for several Reynolds
numbers. The lower end y;r is almost constant but the
upper end is a function of Reynolds number. The invari-
ant assumption can predict well the reasonable log-law
region.
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Fig. 5 The log-law region is indicated by a solid symbol
which is derived by the invariant assumption of pdfs.
The arrows point out the position y/§ = 0.2.

PROPER ORTHOGONAL DECOMPOSITION

Proper orthogonal decomposition (POD) is an es-
sential tool to identify the coherent structure.() This
provides a mathematically rigorous procedure for ex-
tracting the most energetic modes from a random field.
POD has been applied by many researchers to various
flow field and the system of nonlinear ordinary differen-
tial equations governing the amplitudes of spatial struc-
tures has been reported. So the detailed explanations
are omitted here. The streamwise velocity fluctuation
is decomposed as

'(y,t) = Y ait)gi(y), 3)

i=1

where N is a total measuring position, N = 24. The
total energy in the region I: 7.0 < y* < 322.0 is given

as a summation of the eigenvalues

N

Er = /Iur(y)zdy = Z A, (4)

i=1

where u» = /(u’?). The most important property is
that the convergence of the representation is optimally
fast. Each eigenvalue represents the ensemble-averaged
energy content in each mode, and the first eigenmode
contains the large amount of the total energy. In this
analysis, the first eigenmode contains about 40% energy,
and the second one has 20%, that is, (A + A2)/Er ~
0.6. The eigenvalue decays in the exponential form like
Az o exp(—az), and @ = 0.29 in this system. A typi-
cal example of instantaneous velocity field is shown in
Fig. 6(a) in which a few large scale structures are con-
tained. The contour indicates the normalized turbulent
fluctuation, «'/Up. In Fig. 6(b) this instantaneous ve-
locity field is reconstructed by the first and second POD
modes. The coherent large motions are caught well by
these two modes.

RESULTS AND DISCUSSION

We mentioned the procedure to extract the log-law
region from the invariant assumption of pdfs. And then
the coherent structures are well extracted by a few modes
of POD technique. Therefore, in this section we con-
sider the relation between the log-law region and the
coherent structures.

The velocity field is reconstructed by POD series
without the first and second eigenmodes. That is, from
Eq. (3) we have

N

u(y,t) = Y ai()i(y), 5)

=3

which does not contain the fluctuation caused by the
coherent structures. The invariant assumption of pdf is
checked for u*, and the result is indicated in Fig. 4(b).
From the beginning of T';4, y& is larger than the upper
end of the log-law, and when yf reaches the constant
value, y; is located far from the wall. This means that
the invariant assumption is broken. There is no reason-
able region where the pdf’s profiles resemble each other
for small I';5. This is because the coherent structure
plays a significant role in the log-law region to produce
the turbulence intensity. To confirm this, the stochas-
tic estimation is applied. Using the POD ingenfunction,
the velocity at 4’ is predicted by the velocity at y in an
average sense that

S, Xl (1) (1) (v)
oL Ml @)l

The velocity at y is a reference velocity, and u'(y’) is

predicted by the Eq. (6). In Fig. 5 we indicate the

large scale motion which is predicted by the reference
velocity at y* ~ 30 and y* ~ 90, the former is almost

(W' (")’ (v)) = (6)
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the beginning of the log-law region and the latter is the
middle point of it. Coherent structures are almost the
same scale with the log-law region.

Fig. 6 (a) Instantaneous velocity contour normalized by
the outer variable; u’'/U;. (b) Reconstructed velocity
field by the first and the second POD eigenmodes.

Fig. 7 (a) Large scale motion predicted by the stochas-
tic estimation from the reference point at y* ~ 30. (b)
Large scale motion predicted by the stochastic estima-
tion from the reference point at y* =~ 90.

CONCLUSIONS

In zero-pressure gradient boundary layers, we present
the definition of the log-law region as the extent where
the pdf profile of normalized u-component velocity fluc-
tuation remains unique. Coherent structures are identi-
fied by a few modes of POD technique, and the invariant
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assumption is checked for the velocity field in which the
coherent structures are removed. The invariant assump-
tion is broken off, therefore coherent structures play a
significant role in log-law region. Stochastic estimation
enables us to know the mean scale of the coherent struc-
tures in space. They are almost comparable to the log-
law region when the reference point is set at y™ ~ 90.
Even when it is located at yt ~ 30, the effect extends
up to y+ ~ 120.
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