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ABSTRACT

Hairpin vortices are basic flow structures of turbulent
boundary layers and therefore their study is of great
importance. One of the basic steps for understanding the
mechanisms that govern turbulent boundary layers is to
consider the evolution of a single hairpin vortex. This may
contribute eventually not only to the comprehension of the
hairpin creation processes and to a better understanding of
turbulent boundary layers, but also to devising means for
controlling boundary layer turbulence by taming hairpins. In
the present study, a numerical model of an experimental
setup was built. An initial disturbance was created by
suction. Numerical simulations of the inception, growth and
shedding of hairpin vortices in laminar rotating shear flows
were compared with experimental results to validate the
numerical model. In the instability region, the disturbance
grows in size until it becomes a hairpin that is eventually
shed, while another hairpin is being formed. The numerical
results are in good agreement with the experimental results.
The validated numerical model is suitable for future study of
the mechanisms involved in the hairpin vortex evolution and
shedding.

INTRODUCTION

In the present paper the evolution of finite-amplitude
localized disturbances in laminar rotating shear flows is
numerically investigated. This is a sequel to the theoretical
and experimental contributions of Levinski & Cohen (1995)
and Malkiel, Levinski & Cohen (1999), respectively.

In 1967, Kline et al. revealed hairpin like well organized
vortex structures in the near wall region of a turbulent
boundary layer. Following this pioneering work, these
structures were reported by a growing list of researches that
suggested hairpin type vortices as one of the basic flow
structures of turbulent boundary layers. Hairpin vortices

consist of a pair of counter-rotating ‘legs’ inclined to the
main flow direction and connected by a relatively short
‘head’ segment. Numerous experimental and computational
works identified hairpin vortices in shear flows, see for
example Head and Bandyopadhyay (1981) and Moin and
Kim (1985). All these cases considered a large population of
hairpin vortices. Zhou et al. (1996) showed that sufficiently
strong hairpin vortices generate a hierarchy of secondary
hairpin vortices, providing the mechanism by which the
vortices reproduce themselves and eventually populate the
entire near wall region.

Thus, one of the basic steps for understanding the
mechanisms that govern turbulent boundary layers is to
consider the evolution of a single hairpin vortex. This may
contribute eventually not only to the comprehension of the
hairpin creation processes and to a better understanding of
turbulent boundary layers, but also to devising means for
controlling boundary layer turbulence by taming hairpin
vortices.

To understand the mechanism leading to the rapid growth
of a hairpin vortex in boundary layers, Levinski & Cohen
(1995) focused on the evolution of a localized disturbance,
all dimensions of which are much smaller than the length
scale characterizing variations of the basic (unperturbed)
flow. According to the results of the theoretical model, planar
unidirectional flows are always unstable with respect to
finite-amplitude localized disturbances. For this reason, in
their experimental work Malkiel et al. (1999) focused on an
axisymmetric Couette flow for which a stability criterion is
predicted to exist. Moreover, unlike plane shear flows in
which the inclination angle of the growing vortex is predicted
to be 45°, this angle in the case of rotating shear flows is
found theoretically to be a function of the basic flow
parameters.

It was found that the theoretical predictions concerning the
marginal value for instability are in good agreement with the
experimental observations. In addition, measurements of the
inclination angles of hairpin vortices under various external
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flow conditions showed good qualitative agreement with the
theoretical predictions. Based on the experimental results, it
was concluded that the theoretical criterion is sufficient in
predicting stability, i.e. it is capable of determining the
conditions under which the initial vortex disturbance will not
grow. However, the experimental results show that the model
provides only a necessary condition for instability. Thus, for
instability to occur, more conditions associated with the
initiation of the vortical disturbance need to be satisfied.

CFD simulations can be utilized to study the physics of the
hairpin evolution. It can provide high resolution description
of both the velocity and pressure fields. Moreover, CFD
techniques can be used to isolate parameters easily, and thus
shed light on the underlying flow processes. The experiments
considered the evolution of a single hairpin in a laminar flow.
Therefore, the computational task is of reasonable extent; a
single hairpin can be resolved with a higher resolution than in
many existing DNS or LES studies that considered a large
number of hairpin vortices.
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Figure 1: The computational domain

Yet, the accuracy and validity of the numerical simulations
should be demonstrated first. The present study focuses on
the verification of the numerical model and the numerical
solution. The specific objectives of the present numerical
study are (i) to validate the numerical simulations with the
experimental results; this will allow the future use of
numerical simulations in investigating conditions for the
generation (or suppression) of hairpin vortices, (ii) to obtain
information concerning the flow characteristics, in particular
data that cannot be provided (at least easily) by experimental
techniques.

NUMERICAL MODEL

Geometry and mesh

The computational domain is shown in Fig. 1. This domain
models as closely as possible the experimental setup of
Malkiel et al. (1999). A Couette flow is simulated between
two concentric circular cylinders of radius 5 and 5.9 cm. The
inner and outer cylinders rotate with an angular velocity of

€, and €, (in the same direction), respectively, to produce
a shear flow of a given strength. The symmetry of the

problem is used to reduce the domain of calculation. The
boundary opposite of the symmetry plane is placed at a
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distance of 2.5cm. The upstream and downstream
boundaries are placed at an angular position of 5° and 15°
from the suction holes, respectively. Numerical experiments
revealed that boundaries placed farther away (8° and 25°,
respectively) did not affect the solution significantly in the
region of interest. The flow disturbance is created by two
square or circular suction holes (one on each side of the
symmetry plane) with an area identical to that used in the
experimental setup (3.5mm? total area). The center of each
hole is placed at a distance of 3.5mm away from the
symmetry plane.

A typical mesh consisted of 33x49x25 points in the radial,
circumferential and axial directions, respectively. The mesh
on the inner wall and on the symmetry plane is shown in
Fig. 2. In several cases, unstructured meshes were employed
(with approximately the same number of nodes). Mesh points
were clustered in the hairpin vortex growth region.

Mathematical and discrete model

The incompressible time dependent Navier Stokes
equations were solved by a commercial software package
(Fluent, Fluent Inc.). The equations were solved in a rotating
frame of reference rotating with a speed of the inner cylinder.
On the upstream boundary as well as on the boundary
opposite of the symmetry plane, the Couette velocity profile
was specified. The inner and outer walls were rotating with
the corresponding angular velocity.

The strength of the disturbance was controlled by the
incoming Couette velocity profile (the rotational speeds €,

and Q_ of the inner and outer cylinders and their radii,

respectively) and the total volume flow rate through both
suction holes that varied between ¢ =1 to 6 cm®/sec.
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Figure 2: A sample mesh on the inner cylinder and on the
symmetry plane.

A second-order upwind spatial discretization and an
implicit first order temporal scheme were used. The SIMPLE
approach was employed to decouple the continuity equation
from the momentum equations. The discrete equations were
solved by an algebraic multigrid method. A single time step
required about 1min of Pentium II 300Mhz CPU time on an
NT PC with 256 Mbyte memory for a mesh of approximately
40,000 nodes.



Validation

The solution was validated by performing mesh and time-
step refinement tests that are summarized in Figs. 3-5. The
tests were performed for the case of ¢ =1.5cm?sec and
Q,=0, Q =60rpm

The time step refinement test employed a mesh of
approximately 40,000 nodes; the time step was varied
between At =0.02 and 0.000625 by halving it in each
subsequent case. In Fig. 3 the evolution of the vorticity at a
point on the symmetry plane is shown for all these cases. The
peak corresponds to the instant when the hairpin center
passes the point. Obviously, a time-step of At =0.0025 is
required to obtain a temporally converged solution. However,
a large time step of At =0.005 still results in an accurate
solution.

Mesh independence was partially tested by refining the
mesh in the region of the hairpin vortex evolution. In this
region, the mesh size was decreased by half in each direction
and the time step was fixed at At = 0.0025. The evolution of
the vorticity at the same point is shown in Fig. 4 for the
original mesh (Mesh 1, 40,000 nodes) and for a finer mesh
(Mesh 2, 120,000 nodes). The finer mesh was generated by
halving the mesh size in each direction in the region of the
hairpin vortex growth. Noticeable differences can be
observed only when the hairpin passes the test point.

To gain a better view on the significance of these
differences, Fig. 5 gives the iso-vorticity surface for the two
cases near the time of maximal difference in the vorticity
(marked by square and circular symbols in Fig. 4). It should
be noticed that in the presentation of these results, the
solution is mirrored across the symmetry plane to show the
two legs of the hairpin vortex. The shaded wall region below
the hairpin marks the inner cylinder. The legs of the hairpin
originate from the suction holes.

The form of the hairpin vortex is similar in both cases;
however, the finer mesh results in a smoother surface and a

Vorticity

Figure 3: Time-step independence test of the vorticity
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more sharply defined vortex. Additional comparisons
revealed that although local details may vary between the
two meshes by as much as 20%, the global features, as well
as all the physical processes, such as the evolution of the
hairpin and its shedding are essentially mesh independent.
Therefore in most of the simulations, the coarser mesh was
employed.

RESULTS
The evolution of the hairpin from inception to its shedding

is described in Fig. 6 for the case of ¢ =1.5 cm%sec, €, =0,
€, =60 rpm. The hairpin is visualized by plotting an iso-

vorticity surface (w =130 1/sec) for several instants during
one shedding cycle.

The hairpin starts as a disturbance concentrated near the
inner cylinder spanning the two suction holes (the center of
each suction hole is in the middle between the base of the
hairpin leg and the small vorticity surface that extends in the
direction opposite to the symmetry wall). The disturbance
grows in size by penetrating into the outer flow, away from
the inner cylinder. The head of the disturbance encounters a
larger velocity of the shear flow. This difference in the
velocity transforms the arc-like disturbance into a hairpin
vortex by stretching the legs. The lift up induced by the legs
of the vortex raises the hairpin head even more into the faster
outer stream, until it is eventually pinched-off and is shed
while the next hairpin is being built near the inner cylinder.
Prior to the shedding, the lower part of the hairpin legs are
stretched almost parallel to the wall (i.e. it is at a small angle
with it), while the upper part of the legs has an inclination
angle of 39° with the radial direction. This agrees very well
with the theory (41°) and a with the experimental results
(36°). A very similar sequence of the generation, growth and
shedding of the hairpin was observed in the experiments as
well.
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(b)

Figure 5: The hairpin at time=1.5 for the (a) coarse and
(b) fine meshes
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Figure 7: Comparison of the experimental and calculated
velocity vector for the case of €, =0, Q =23 rpmand g =

1.5 cm’s

Figure 6: The evolution of a hairpin for the case of ¢ =1.5 cm¥/sec, Q, =0, , =60 rpm.
The time difference between the plots is 0.06 sec. The shedding frequency is 3.3 Hz
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The suction holes were introduced to generate the initial
disturbance. Once a large enough disturbance is created, the
above mentioned flow processes take care of transforming it
into a hairpin vortex, provided the right conditions prevail
(e.g., the flow is unstable, see the next section). Other
generation methods of the initial finite-amplitude disturbance
are possible, such as injection (Acarlar and Smith, 1987b) or
finite-amplitude acoustic excitation leading to subcritical
transition (Masahito and Nishioka, 1995) or roughness or
hemisphere protuberance (Klebanoff et al. 1992, Acarlar and
Smith, 1987a).

Comparison of the calculated velocity field on the
symmetry plane with the experimental results is shown in

Fig. 7 for the case of Q,=0 and € =23rpm,
g =1.5 cm%s. Good qualitative agreement is observed and

the calculated flow field captured all the details observed in
the PIV experimental data. It is worth noting that
downstream of the suction holes (denoted by ‘s’ in the upper
plot), the fluid surrounding the hairpin is ejected outwards in
the radial direction, away from the inner cylinder. This
ejection, which resembles the bursting phenomenon observed
in turbulent boundary layers, is in fact a superposition of the
unperturbed flow and the flow induced by the hairpin.

The instability domain
In the experiments of Malkiel et al. (1999) an instability
domain was found in the ©,/Q, and ¢ domain for a given

€, and inner and outer radii. The term stability here means

that the fluid impulse of a closed vortical disturbance
(localized in all three directions) will not grow in time (see
discussion in Malkiel et al., 1999). In these experiments,
hairpin vortices, similar to the ones reported for the case of a
laminar boundary layer over a flat plate were found to
develop in the instability region only. It should be recalled
that in this instability region (in the Levinski and Cohen,
1995 sense) the flow is known to be linearly stable.

Figure 8 compares the instability region obtained
experimentally (hollow symbols) with the calculated results
(solid symbols). The instability region has a triangular shape
in the ©,/Q, and ¢ = plane. The lower boundary of the

calculated results agrees very well with the experimental
results. This boundary can be also theoretically predicted,
Malkiel et al. (1999). Less favorable agreement is obtained in
the upper boundary as well as in the right-most corner. Yet,
the triangular shape of the region, that was an important
discovery of the experiments of Malkiel et al. (1999) is
obtained in the numerical simulations as well.

Outside of this triangular instability region, no hairpin
evolution or shedding could be found. Typical forms of the
disturbance are shown in Fig. 9 for three representing cases
outside of the hairpin vortex growth instability region. In the
first case, Fig. 9a, a low suction level is applied (£2,/€, =0,

6 [
5#5\ Q, =60 rpm

N
4\
o 3 ‘ 4
jo—-o— -
0

0 0.1 0.2 0.3 0.4 0.5 0.6
Q/Q,

Figure 8: Comparison of the instability region (hairpin
development region). Calculated results-solid symbols,
experimental results- hollow symbols

g =1cm?s). A disturbance is formed, yet it does not grow

into a hairpin. Its central part, however, is shed, creating a
slightly unsteady flow in this region.

Malkiel et al. (1999) estimated the perturbation size to
grow as the square of v (the kinematic viscosity). The lower
stability bound (Fig. 8) should therefore depend on v. In
Fig. 10, the minimal suction rate (beyond which hairpin
vortices grow) is plotted against a scaled kinematic viscosity
(v, is the kinematic viscosity of water). Obviously, the

minimal suction required for the growth of hairpin increases
as the viscosity decreases (in the range of the calculations,

the minimal suction is proportional to l/v ). The dependence

of the minimal suction rate on the viscosity found in the
numerical simulations is in agreement with the theory.

CONCLUDING REMARKS

In the present study, numerical simulations of the inception,
growth and shedding of hairpin vortices in rotating flows
were compared with experimental results to validate the
numerical model. An initial disturbance was created by
suction. In the instability region (in the Q,/Q  and ¢=
plane), the disturbance grows in size and it transforms into a
hairpin vortex that is eventually shed, while another hairpin
vortex is being formed. The numerical results are in good
agreement with the experimental results. Thus, we developed
and validated a numerical model for future study of the
mechanisms involved in the hairpin evolution and shedding.
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Figure 9: Iso-vorticity surfaces in the stable regions,
(@) Q,/Q,=0, ¢= 1cm’s, (b) Q,/Q, =03,
g=3cm’sand (c) Q,/Q,=0.7, ¢=1.5cm’/s
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